自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(3118)
  • 资源 (26)
  • 收藏
  • 关注

原创 【机器学习入门】7.[第1章 路线与环境] 从Kaggle到生产:竞赛思维如何迁移到商业落地

从线上狂欢到真金白银:避开这六个死亡陷阱,让Kaggle金奖牌变成商业印钞机!——用工程思维重组竞赛基因。fill:#333;color:#333;color:#333;fill:none;important;important;important;important;important;important;important;important;important;important;important;important;important;important;important;important。

2025-08-31 20:21:18 312

原创 【机器学习入门】8.[第1章 路线与环境] 面向产品的ML思维:定义问题、评估价值与闭环验证

摘要: 本文剖析机器学习产品化的核心思维,强调从业务需求出发,避免技术导向陷阱。通过5大关键模块: 产品思维先行:明确业务痛点和价值验证 问题定义:将业务目标转化为可建模任务 价值评估:区分技术指标与真实ROI 闭环验证:建立上线后的持续迭代机制 避坑指南:警惕数据泄漏、特征不一致等常见问题 文中包含电商、金融等场景案例,提供可落地的代码框架和评估方法,助力模型从实验室走向生产环境。

2025-08-31 20:21:09 308

原创 【机器学习入门】9.[第1章 路线与环境] 常见误区避坑图谱:少走3年弯路的经验兵器谱

摘要: 本文针对机器学习新手常见的5大入门陷阱,提供实战避坑指南:1)工具选择障碍症——建议锁定Python+Anaconda+VSCode组合;2)数学恐惧症——强调先实践再补理论;3)理论实践脱节——推荐"5分钟暴力实践法"即时应用;4)资源囤积病——提倡"三一删库学习法"聚焦核心资源;5)完美主义拖延——鼓励从"Hello World"简单代码开始。文章通过代码片段、流程图等可视化方式,揭示"学不会"的本质多是方法不当,提

2025-08-31 20:21:02 312

原创 【机器学习入门】6.[第1章 路线与环境] 代码风格与工程规范:写出可维护的机器学习代码

文章摘要(148字): 本文系统梳理了机器学习代码工程化的五大核心技巧:1)注释文档应遵循医学指南式标准;2)环境隔离使用Conda+requirements.txt实现精确复现;3)数据管理采用Pathlib规范路径和Parquet格式提速;4)函数设计需模块化拆分并控制复杂度;5)重构安全通过数据副本和流水线保护原始数据。文章通过真实案例证实,规范化的工程实践可使数据加载效率提升24倍,项目交接时间缩短92%。文末强调,良好的工程规范不是限制,而是保障研究可复现性和团队协作效率的基础设施。

2025-08-30 10:03:45 627

原创 【机器学习入门】5.[第1章 路线与环境] 数据科学工具箱清单:必装库与高频命令速记

本文提供了一份全面的数据科学环境配置指南,帮助新手高效搭建开发环境。文章通过思维导图梳理了四大核心模块:必备库安装、环境管理、命令速查和避坑技巧。重点内容包括:1)数据科学基础三件套(NumPy/Pandas/Matplotlib)的正确安装方法;2)Conda虚拟环境创建与管理全流程;3)20个高频终端命令速查表;4)5类典型报错解决方案;5)Jupyter和VSCode开发环境优化技巧。文中强调环境隔离的重要性,并给出镜像加速、依赖管理等实用建议,可帮助开发者将环境配置时间从3小时缩短至30分钟,避免9

2025-08-30 10:02:59 454

原创 【机器学习入门】4.[第1章 路线与环境] GPU入门与省钱指南:从租卡到本地训练的最佳实践

GPU高效使用指南:省钱又省心的深度学习方案 本文提供了一套完整的GPU使用策略,涵盖云服务与本地配置的优化方案: 认知基础:解析GPU在深度学习中的核心作用,指出新手常见误区 云服务选择:对比主流平台价格,提供租用避坑技巧 硬件配置:5000元打造高性价比训练主机方案 环境搭建:一键部署脚本解决CUDA版本冲突问题 资源监控:实时检测GPU利用率,避免资金浪费 训练优化:12GB显存运行大模型的技术方案 长期策略:混合云与本地协同的省钱架构 通过梯度检查点、8bit量化等技术,可实现小显存运行大模型;结合

2025-08-30 10:02:17 728

原创 【机器学习入门】3.[第1章 路线与环境] 搭建你的ML开发环境:Conda、Poetry、Docker一把梭

摘要: 本文针对机器学习环境配置难题,提出Conda+Poetry+Docker一站式解决方案。Conda实现Python环境隔离,避免依赖冲突;Poetry通过智能依赖管理锁定版本,告别requirements.txt混乱;Docker容器化确保跨平台一致性。三大工具配合使用可解决95%的环境配置问题,显著提升开发效率。案例显示,传统方法平均浪费5小时排查环境问题,而该方案能实现"一次配置,处处运行",尤其适合多项目协作和跨平台部署场景。

2025-08-29 16:31:20 526

原创 【机器学习入门】2.[第1章 路线与环境] 学习路径与成长心法:用项目驱动你的指数级提升

朋友,看完这7000字指南,你是否还觉得机器学习是座难以攀登的高峰?

2025-08-29 12:57:26 797

原创 【机器学习入门】1.[第1章 路线与环境] 机器学习全景地图:从入门到进阶的硬核实战路线

《机器学习入门全景指南》摘要(142字): 本文为机器学习新手提供系统化学习路线图,包含六大核心模块:1)基础概念解析与学习类型划分;2)个性化路径选择方法论;3)环境配置避坑指南;4)实战项目进阶策略。通过可视化知识图谱(如监督/非监督学习分类)和典型错误案例分析(如环境配置冲突、数学基础薄弱等),指导读者根据自身背景定制学习方案。特别强调Anaconda环境搭建、Scikit-learn工具链使用等实操要点,提供从"Hello World"到真实案例的渐进式训练方案,帮助零基础者避开

2025-08-29 09:35:27 534

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】分布式爬虫调度器:Redis + Kafka 的任务流

分布式爬虫调度器设计摘要 本文提出基于Redis+Kafka的分布式爬虫调度架构,采用Python 3.12实现高并发任务分发与消费。系统通过Redis的SETNX实现任务去重和快速入队,利用Kafka保证任务可靠分发和多消费者并行处理。核心设计包括:Redis任务队列缓冲、Kafka持久化防丢失、批量推送减少I/O开销、异步消费处理等。工程实现涵盖配置管理、日志封装、Redis客户端(任务去重与批量获取)、Kafka生产者/消费者客户端,以及调度器主循环。该架构可支持数万QPS的URL调度,通过实验验证了

2025-08-26 16:17:23 371

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】高效实现MQTT与CoAP边缘网关:IoT设备汇聚与数据传输优化

摘要: 本文探讨了如何利用MQTT与CoAP协议构建高效边缘网关,解决物联网设备数据汇聚与传输的挑战。通过Python实现MQTT/CoAP的客户端和服务端,优化数据传输效率,并涵盖性能测试、安全策略及常见问题解决方案。适用于智能家居等大规模IoT场景,确保低延迟、高可靠通信。

2025-08-26 16:15:36 222

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】边车代理与服务网格基本形态全解析:用 Python 3.12 从零实现 Sidecar 原型

本文通过Python 3.12从零实现了一个轻量级Sidecar代理,完整解析了服务网格中的边车模式。主要内容包括:使用aiohttp构建异步代理服务,实现请求转发、日志记录、超时重试等功能;通过pydantic管理配置,structlog处理结构化日志;提供端到端可运行示例,包含业务服务模拟、测试验证及性能基准测试。文章重点演示了如何在不侵入业务代码的前提下,通过Sidecar解耦网络功能与业务逻辑,并详细介绍了异步性能优化、安全策略等核心实践,为理解微服务架构中的边车模式提供了可验证的工程实现。

2025-08-26 16:14:59 890

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】HTTP/1.1 解析器:基于状态机的最小实现

摘要:基于状态机的 Python HTTP/1.1 解析器实现 本文介绍了如何使用 Python 构建一个基于状态机的最小 HTTP/1.1 解析器。主要内容包括:HTTP 协议解析的基本原理,状态机模型的设计与实现,请求行、请求头和请求体的解析方法,以及性能测试和安全考量。通过这种实现方式,开发者可以深入理解 HTTP 协议底层工作原理,同时获得一个轻量级、高效的解析器。文章还提供了单元测试和性能基准测试方案,确保解析器的正确性和性能优化。该实现为网络编程学习提供了实用参考,特别适合需要自定义 HTTP

2025-08-25 09:17:28 264

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】零拷贝文件服务:sendfile + mmap 的极限实践

零拷贝文件传输性能优化实践 本文介绍了三种Python文件传输实现方案:传统read/write、sendfile零拷贝和mmap内存映射。通过对比分析,重点展示了零拷贝技术在减少CPU开销、提升吞吐量方面的优势。文章包含完整工程实现,涉及: 三种HTTP文件服务实现(传统/零拷贝/内存映射) 结构化日志、基准测试等生产级实践 关键性能指标对比数据 常见问题与解决方案 特别适合大流量文件传输场景(如视频点播、CDN节点),帮助开发者充分利用Linux内核特性,逼近网络传输性能极限。所有代码均基于Python

2025-08-25 09:16:54 998

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】长连接集群设计 - 心跳机制、断线重连与水平扩展的实战指南(从单节点到万级连接)

步骤3: 长连接服务器与集群扩展(续) await handle_reconnect(websocket, settings.reconnect_attempts) except Exception as e: logger.error("Connection error", error=str(e)) finally: connected_clients.remove(websocket) heartbeat_task.cancel() logger.info("Client disconnected",

2025-08-25 09:05:59 1874

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python 高阶网络编程:一致性哈希与服务发现 - 从单体到分片的分布式系统构建指南

Python 分布式系统构建:一致性哈希与服务发现实践 摘要 本文介绍了如何在Python中实现分布式系统的关键组件:一致性哈希和服务发现。一致性哈希算法通过哈希环和虚拟节点技术,显著减少了节点变更时的数据重分配开销;服务发现机制则实现了动态节点注册与健康检查功能。文章提供了基于asyncio的高性能异步实现方案,包括核心哈希环逻辑、服务发现集成、故障处理机制以及性能优化策略。通过完整的代码示例和架构图示,开发者可以学习如何构建可扩展的负载均衡器或分布式缓存系统,处理节点扩容、故障转移等场景。文章还对比了同

2025-08-24 09:30:00 550

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python Kademlia DHT 实现:解锁去中心化 P2P 网络查找的秘密武器

本文将介绍如何使用Python实现Kademlia分布式哈希表(DHT)协议的核心功能。Kademlia是一种去中心化的P2P网络协议,通过XOR距离计算和K-桶路由机制实现高效节点发现和数据查找。文章从环境配置开始,详细展示了如何构建Kademlia节点ID生成、路由表管理、XOR距离计算等基础模块,并提供了异步网络通信的实现方法。通过这个简化版的Kademlia实现,开发人员可以掌握分布式系统中去中心化查找的核心原理,为构建P2P应用打下基础。

2025-08-23 17:00:00 722 2

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python 高阶网络编程:构建异步 DNS 解析器,实现缓存、并发与失败转移 - 提升应用性能的秘密武器

Python 异步 DNS 解析器实现摘要 本文介绍如何构建高性能异步DNS解析器,核心功能包括: 异步架构:基于asyncio实现非阻塞解析,避免同步阻塞问题 缓存优化:集成TTL缓存机制,减少重复查询 并发处理:支持同时解析多个域名,提升吞吐量 容错机制:多DNS服务器轮询和自动故障转移 性能控制:内置超时、重试和并发限制策略 实现方案采用Python 3.12+asyncio+dnspython组合,通过TTLCache管理缓存,使用asyncresolver进行异步查询。文章包含完整代码示例(约10

2025-08-23 08:00:00 965

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python NAT 穿透入门:用 STUN/TURN/ICE 实现 P2P 连接小实验 | 高阶网络编程教程

Python NAT 穿透实验摘要 本教程演示如何用 Python 实现 NAT 穿透,解决 P2P 通信中的连接障碍。通过 STUN、TURN 和 ICE 协议组合,我们探索了两种实现方案: 同步 STUN 客户端(使用 pystun3): 检测 NAT 类型(全锥形/对称等) 获取公网 IP 和端口映射 简单但可能阻塞主线程 异步 ICE 候选收集(使用 aioice): 整合 STUN 和 TURN 服务 自动优选最佳连接路径(直连或中继) 基于 asyncio 实现高并发处理 实验包含完整的工程初始

2025-08-22 18:00:00 1417

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】HTTP/2 实战指南:掌握 h2 多路复用与流控,提升网络性能翻倍!

HTTP/2 实战摘要 本文深入探讨 HTTP/2 协议的核心优化技术,包括多路复用和流控机制,通过 Python 的 h2 库实现高性能 HTTP/2 服务。文章从 HTTP/1.1 的性能瓶颈切入,详细介绍了 HTTP/2 如何通过单一 TCP 连接并行处理多个流解决头部阻塞问题,以及通过窗口机制实现流量控制。教程提供完整的开发环境配置指南,包含服务器端和客户端的同步/异步实现方案,并附有清晰的时序图和流程图说明核心原理。通过实战代码演示了如何构建支持多路复用和流控的 HTTP/2 系统,适用于高并发

2025-08-22 08:00:00 711

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python高阶网络编程:自定义高可用RPC——msgpack长连接心跳机制,构建零宕机微服务调用,碾压gRPC的轻量替代

本文介绍如何用Python构建高可用的自定义RPC框架,通过msgpack序列化、TCP长连接和心跳机制实现高性能微服务通信。文章详细讲解了核心组件设计,包括异步服务器实现、心跳检测和自动重连机制,并提供与gRPC的性能对比。通过Mermaid图表展示系统架构和调用流程,配套完整的代码示例(从环境配置到核心实现),帮助开发者快速构建适用于高并发场景的轻量级RPC解决方案。关键词:Python RPC、msgpack、长连接、心跳机制、微服务通信。

2025-08-22 01:45:00 821

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python 高阶网络编程:Trio 和 AnyIO 结构化并发范式详解 - Nursery 模式助力高效网络任务管理

在 Python 网络编程的高阶阶段,处理并发网络任务时,asyncio 的自由- 主题是“Trio/AnyIO 并发范式:nursery 与结构化并发”,属于高阶课程。度往往导致资源泄漏和错误传播问题。本文深入探讨 Trio 和 AnyIO 库的结构化并发范式,特别是 Nursery 机制,通过 Nursery 管理并发子任务,确保异常传播和资源清理。

2025-08-21 08:00:00 1708

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python 高阶网络编程:构建轻量级 API 网关,实现认证、限流、熔断与恢复机制 - 提升微服务系统韧性

Python 轻量级 API 网关开发摘要 本教程详细介绍如何使用 Python 3.12 构建高性能 API 网关,重点实现微服务架构中的关键功能: 核心功能: JWT 认证机制 令牌桶限流算法 熔断器模式(Closed/Open/Half-Open) 半开状态自动恢复策略 技术架构: 基于 FastAPI 和 asyncio 实现异步处理 使用 Pydantic 进行配置管理 Structlog 实现结构化日志 支持 HTTPX 进行后端服务通信 开发要点: 从环境配置到工程初始化完整流程 认证、限流、

2025-08-21 08:00:00 1059

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python高阶网络编程:高性能序列化——orjson与msgspec的零分配之路,碾压标准json的秘密武器

摘要 本文深入探讨Python高性能网络编程中的序列化优化方案,重点对比orjson和msgspec两个库的零分配机制与标准json的性能差异。通过构建Echo服务器案例,展示了如何将orjson/msgspec集成到FastAPI应用中,实现微秒级序列化响应。文章包含完整的工程实现步骤,从环境配置、日志封装到核心序列化协议实现,并通过同步/异步方式对比性能表现。实验结果表明,orjson和msgspec能显著降低GC压力,提升10倍以上吞吐量,是构建高并发网络服务的理想选择(关键词:Python高性能序列

2025-08-20 08:00:00 1349

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python高阶网络编程:自己动手实现迷你事件循环(selectors)——异步IO的核心引擎从零构建

摘要 本文介绍了如何用Python的selectors模块从零构建一个迷你事件循环。通过分步骤实现事件注册、轮询和回调处理机制,展示了异步IO的核心原理。项目包含同步线程版本和异步asyncio集成,适合需要深入理解事件驱动编程的开发者。文章还提供了完整的项目初始化、异常处理、日志配置等工程实践,帮助读者掌握高并发网络编程的关键技术。

2025-08-19 08:30:00 2186

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python 高阶网络编程:深入 uvloop 事件循环内部与调度策略优化 - 提升异步 IO 性能的秘密武器

Python WebRTC P2P 文件传输与拥塞控制实战 摘要 本文深入探讨了如何使用 Python aiortc 库实现基于 WebRTC 数据通道的 P2P 文件传输系统。内容涵盖从环境搭建、核心协议封装到文件分块传输与拥塞控制优化的完整实现流程。通过自定义 WebRTCPeer 类、异步文件传输机制和 SCTP 拥塞控制策略,演示了高性能 P2P 通信的关键技术。文章还提供了性能基准测试方法和安全边界设计,适合需要构建低延迟、高可靠文件传输系统的开发者参考。 核心实现亮点 异步架构:基于 async

2025-08-18 08:00:00 2085

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】HTTP/2 实战指南:掌握 h2 多路复用与流控,提升网络性能翻倍!

本文介绍了如何利用HTTP/2的多路复用和流控机制提升网络性能。通过Python的h2库,从零构建支持并行的HTTP/2客户端和服务器,解决HTTP/1.1的头部阻塞问题。文章包含环境搭建、核心实现(同步/异步版本)、性能测试和安全实践,适用于高并发API服务场景。关键点包括:单一TCP连接上并行处理多个请求流、窗口机制实现流量控制,以及如何通过h2库处理连接事件。实战案例展示了HTTP/2如何将响应时间缩短50%以上,为开发者提供了一套完整的性能优化方案。

2025-08-17 18:00:00 449

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python 网络编程高阶教程:探索 WebRTC 数据通道的 P2P 文件传输与拥塞控制实战(aiortc 实现)

Python WebRTC P2P 文件传输与拥塞控制实战 摘要 本文深入探讨了如何使用 Python aiortc 库实现基于 WebRTC 数据通道的 P2P 文件传输系统。内容涵盖从环境搭建、核心协议封装到文件分块传输与拥塞控制优化的完整实现流程。通过自定义 WebRTCPeer 类、异步文件传输机制和 SCTP 拥塞控制策略,演示了高性能 P2P 通信的关键技术。文章还提供了性能基准测试方法和安全边界设计,适合需要构建低延迟、高可靠文件传输系统的开发者参考。 核心实现亮点 异步架构:基于 async

2025-08-17 08:00:00 681

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python高阶网络编程:自建轻量API网关——认证限流熔断恢复一网打尽,微服务架构的零成本守护者,碾压商用方案的开源替代

本文介绍如何用Python构建轻量级API网关,实现微服务架构中的关键功能。通过FastAPI+asyncio技术栈,开发者可以自定义网关,替代昂贵的商用方案。核心功能包括: 安全认证:基于JWT的令牌验证机制 流量控制:令牌桶算法实现的请求限流 故障隔离:熔断器模式自动阻断问题服务 自动恢复:半开状态探测机制实现服务自愈 文章提供了完整的项目结构、配置管理和核心实现代码,包括: 环境配置与工程初始化步骤 结构化日志和异常处理 熔断器状态机实现 异步中间件开发 该方案特别适合需要高并发处理、故障隔离和成本优

2025-08-16 18:00:00 912

原创 【高阶】【python网络编程技术初阶,中阶,高阶课程】Python HTTP/3 与 QUIC 深度教程:用 aioquic 构建高性能客户端与服务器,提升网络传输效率

本文介绍了如何使用Python的aioquic库实现HTTP/3和QUIC协议的高性能客户端与服务器。HTTP/3基于QUIC协议,解决了传统HTTP/2的延迟和队头阻塞问题,特别适合弱网环境。教程详细讲解了QUIC握手流程、0-RTT快速恢复和流复用等核心特性,通过Mermaid图展示了协议交互时序。文章提供了完整的开发环境搭建指南,包括虚拟环境配置、依赖安装和项目结构初始化,并给出了使用自签名证书的脚本。核心代码实现了支持流复用的QUIC服务器和具备0-RTT能力的客户端,所有代码遵循PEP8规范,包含

2025-08-16 01:38:32 783

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】中阶收官:发布 NetLab 中间层参考实现

摘要 本文介绍了一个基于Python 3.12的NetLab网络中间层参考实现,适用于macOS/Linux环境。该中间层位于业务代码与外部网络交互之间,提供代理调度、限流控制、重试机制、robots.txt检查等功能。文章详细展示了从项目初始化到核心实现的完整过程,包括配置管理、日志系统、代理池、robots检查等关键模块的代码实现。这个可复用的中间层解决方案能够统一管理网络调用,简化业务层开发,适用于电商采集、舆情监控等需要频繁网络交互的场景。

2025-08-15 17:27:18 687

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】代理池与爬虫礼仪:速率、重试与 robots

摘要:本文介绍如何构建一个合规高效的Python爬虫框架,重点解决代理池管理、速率控制、重试机制和robots.txt解析等核心问题。通过Python 3.12实现可扩展的工程架构,包含配置管理、日志记录、代理轮询、访问权限检查等模块。该框架采用异步IO处理高并发请求,内置防御性编程策略,既保证爬取效率又遵守网络礼仪,避免IP封禁和法律风险。配套提供了完整的项目结构和依赖配置,可直接应用于生产环境。(149字)

2025-08-15 16:30:21 967

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】性能压测一把梭:用 Locust 建模用户行为与读懂指标

本文介绍如何使用Locust构建可复现的性能压测方案,包含完整的NetLab工程框架(Python 3.12)。主要内容包括:1)搭建FastAPI示例服务与结构化日志系统;2)实现同步/异步客户端,支持超时、重试、限流和mTLS;3)通过Locust建模真实用户行为(登录→浏览→下单等);4)解读关键指标(RPS、百分位时延、吞吐量、错误率);5)提供端到端命令、基准数据表和常见问题排查清单。文章还涵盖并发模型选择(asyncio vs threading)、性能调优路径(CPU/内存/连接优化)以及工程

2025-08-15 16:29:44 894

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】mTLS 双向认证:确保服务间通信的强约束

mTLS双向认证实现与优化 本文详细介绍了如何在Python微服务中实现mTLS双向认证,包括环境搭建、证书配置、服务端/客户端实现及性能测试。通过OpenSSL生成自签名证书,使用FastAPI+uvicorn构建服务端,httpx实现客户端认证,并提供了完整的测试方案。文章还探讨了性能调优、安全边界处理(超时/重试)以及常见问题排查方法,为构建高安全性的服务间通信提供了实践指南。核心代码示例清晰展示了mTLS的具体实现,适合需要强化微服务安全的开发团队参考。

2025-08-15 14:38:46 730

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】Python 网关防护实战:防御 SSRF / 请求走私 / 头注入全攻略

Python 网关安全防护实战摘要 🚨 本文基于 FastAPI 构建安全网关,防御三大常见 Web 攻击: SSRF 防护 - 通过 URL 解析限制 scheme/IP 段,阻断对内网和元数据服务的访问 请求走私防护 - 检测并阻止 Transfer-Encoding 与 Content-Length 头混用 头注入防护 - 扫描 Header 中的 CRLF 和超长内容 技术亮点: ✅ 可配置的安全策略(白名单 scheme/IP) ✅ 结构化日志记录攻击行为 ✅ 中间件模式实现请求全链路检查 ✅

2025-08-15 14:37:53 626

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】从代码到云端:GitHub Actions自动化CI/CD全流程实战

GitHub Actions自动化CI/CD实战指南 本文详细介绍了如何利用GitHub Actions为Python容器化应用构建完整的CI/CD流水线。主要内容包括: 核心流程:从代码提交触发自动化构建、测试、代码检查到镜像发布的全流程 技术栈:使用Python 3.12、Docker、FastAPI、pytest等现代工具链 关键实现: 示例FastAPI应用及测试用例 优化的Dockerfile配置 完整的GitHub Actions工作流定义 验证方法:提供本地测试和云端验证的详细步骤 性能优化:

2025-08-15 11:03:43 590

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】端到端测试实战:pytest-asyncio + Testcontainers 打造可重复的网络 E2E 环境

摘要 本文介绍如何使用Python 3.12、pytest-asyncio和Testcontainers构建可重复的网络端到端(E2E)测试环境。通过FastAPI实现异步服务,结合Testcontainers动态管理PostgreSQL容器,解决了E2E测试中外部依赖配置复杂的问题。文章详细展示了服务端/客户端实现、测试fixture设计、性能调优和安全防护措施,提供完整的工程骨架和代码示例,帮助开发者快速搭建自动化的网络服务测试体系。

2025-08-15 11:01:22 618

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】断网容错:离线缓存、补偿任务与重放机制的实战

摘要 本文探讨了Python后端开发中的断网容错机制,重点介绍了离线缓存、补偿任务和重放技术的实现方案。通过SQLite本地存储构建离线缓存队列,设计补偿任务自动重试机制,并利用定时检查实现任务重放功能。文章详细展示了从环境搭建、核心代码实现到测试验证的全过程,包括使用FastAPI模拟服务端、pytest进行单元测试以及性能优化建议。最后提出了安全边界处理、常见问题排查思路和未来扩展方向,为构建高可靠网络服务提供了实用解决方案。关键思考点包括如何优化任务版本控制及智能重试策略。

2025-08-15 11:00:42 521

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】幂等性与重复提交:去重键、事务与回滚

在高并发网络系统中,重复请求可能引发数据不一致或业务逻辑错误。本文深入讲解如何通过幂等性设计(包括去重键、事务控制、回滚机制)保障接口安全。从 Python 网络编程实战出发,结合同步/异步双实现,展示事务处理、幂等键生成、请求去重、超时重试等关键能力,并通过 pytest 测试、性能基准、日志追踪完整验证方案的健壮性与效率。

2025-08-15 10:48:02 888

原创 【中阶】【python网络编程技术初阶,中阶,高阶课程】从零实现可靠内部二进制协议:帧结构、序列号、重传机制全解析

Python自定义二进制协议实现摘要 本文介绍如何使用Python设计高效可靠的内部通信协议,解决分布式系统中HTTP/JSON开销大、灵活性不足的问题。主要内容包括: 二进制帧结构设计:使用struct模块定义包含长度、类型、序列号和CRC校验的帧格式,确保数据完整性 可靠传输机制:实现序列号管理和自动重传功能,通过ACK确认和超时重试机制应对网络丢包 两种实现方式: 同步版本:基于socket和threading锁 异步版本:使用asyncio streams,适合高并发场景 工程实践:包含结构化日志、

2025-08-15 10:47:08 635

使用LSTM机器学习预测股票价格 源代码与数据集

### 股票价格预测项目 在这个机器学习项目中,我们将开发一个基于神经网络的股票预测模型,用于预测股票收益。 学习如何开发股票价格预测模型,并构建一个用于股票分析的交互式仪表板。我们使用 LSTM 模型实现股票市场预测,并使用 Plotly Dash Python 框架构建仪表板。 **类别**:机器学习、深度学习 **编程语言**:Python **工具与库**:Plotly Dash、LSTM **IDE**:Jupyter **前端**:Plotly Dash(用于可视化) **后端**:无 **先决条件**:Python、机器学习、深度学习、神经网络 **目标受众**:教育、开发人员、数据工程师、数据科学家 ### 股票价格数据 该数据集包含关于塔塔全球饮料有限公司(Tata Global Beverages Limited)的股票价格记录。数据集中还包含按日期排列的股票价格,包括开盘价、收盘价、最高价和最低价,以及当天的交易量和成交额。 对于想要尝试数据可视化、数据分析以及多种形式的数据处理技术的人来说,这是一个极好的数

2025-01-18

泰坦尼克号生存预测 数据集 titanic

泰坦尼克号生存预测项目指南 1. 数据理解 数据集构成: 训练集(train.csv):包含乘客的特征和生存情况。 测试集(test.csv):包含乘客的特征,但没有生存情况,需要预测。 示例提交文件(gender_submission.csv):假设所有女性都存活的预测结果。 变量定义: survival:生存情况,0表示未生存,1表示生存。 pclass:票类,1表示上等,2表示中等,3表示下等。 sex:性别。 age:年龄,小于1岁的小数表示。 sibsp:船上兄弟姐妹/配偶数量。 parch:船上父母/子女数量。 ticket:票号。 fare:票价。 cabin:舱位号。 embarked:登船港口,C表示瑟堡,Q表示皇后镇,S表示南安普顿。 2. 数据预处理 探索性数据分析(EDA): 使用Pandas和Matplotlib库加载数据,检查数据结构和缺失值。 分析各特征与生存率之间的关系,例如性别、年龄、舱位对生存的影响。 缺失值处理: 对age列的缺失值,可以使用均值或中位数填充。 cabin列缺失值较多,可以考虑创建一个新的二元

2025-01-18

基于深度学习的乳腺癌分类 源代码与数据集

**背景** 浸润性导管癌(IDC)是所有乳腺癌中最常见的亚型。为了对整个组织样本进行侵袭性分级,病理学家通常专注于包含 IDC 的区域。因此,自动侵袭性分级的常见预处理步骤之一是划定整个组织切片中 IDC 的确切区域。 **内容** 原始数据集包含 162 张乳腺癌(BCa)标本的整个组织切片图像,扫描倍率为 40 倍。从中提取了 277,524 个大小为 50 x 50 的 patches(198,738 个 IDC 阴性,78,786 个 IDC 阳性)。每个 patch 的文件名格式为:u_xX_yY_classC.png —— 例如 10253_idx5_x1351_y1101_class0.png。其中,u 是患者 ID(10253_idx5),X 是该 patch 裁剪位置的 x 坐标,Y 是该 patch 裁剪位置的 y 坐标,C 表示类别,0 为非 IDC,1 为 IDC。

2025-01-18

使用librosa进行语音情感识别 数据集 speech-emotion-recognition-ravdess-data

在这个 Python 小型项目中,我们将使用 RAVDESS 数据集;这是 Ryerson 情感语音和歌曲音频-视频数据库,可以免费下载。该数据集包含 7356 个文件,由 247 人进行了 10 次情感有效性、强度和真实性的评分。整个数据集来自 24 位演员,大小为 24.8GB,但我们已经降低了所有文件的采样率。

2025-01-18

使用Pandas和OpenCV进行颜色检测 源代码与数据集

使用Pandas和OpenCV进行颜色检测 源代码与数据集 颜色由三种原色组成:红色、绿色和蓝色。在计算机中,我们将每种颜色的值定义在 0 到 255 的范围内。那么,我们可以用多少种方式来定义一种颜色呢?答案是 256256256 = 16,581,375。也就是说,大约有 1650 万种不同的方式来表示一种颜色。在我们的数据集中,我们需要将每种颜色的值与其对应的名称进行映射。但不用担心,我们不需要映射所有值。我们将使用一个包含 RGB 值及其对应名称的数据集。

2025-01-18

利用XGBoost检测帕金森病 数据合集

利用XGBoost检测帕金森病 数据合集

2025-01-18

识别假新闻 数据集 news.zip

识别假新闻 数据集 news

2025-01-18

使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer

使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer MNIST 数据集 这可能是机器学习和深度学习爱好者中最受欢迎的数据集之一。MNIST 数据集包含 60,000 张手写数字的训练图像(从 0 到 9)和 10,000 张测试图像。因此,MNIST 数据集共有 10 个不同的类别。手写数字图像以 28×28 的矩阵表示,其中每个单元格包含灰度像素值。

2025-01-18

使用深度学习创建您自己的表情符号 源代码与数据集 FER-2013 训练集:28,709张图像 测试集:3,589张图像 七种情感类别

FER-2013(Facial Expression Recognition 2013)是一个用于面部表情识别的经典数据集,旨在通过图像数据训练模型,使其能够识别人类面部表情所表达的情感。该数据集广泛应用于计算机视觉和情感分析领域,特别是在深度学习模型的训练和评估中。 **数据集特点** 1. **图像格式**: - 图像为48x48像素的灰度图像,每个像素的灰度值范围为0到255。 - 图像已经过预处理,确保面部居中并占据图像的主要部分。 2. **情感类别**: - 数据集将面部表情分为七种情感类别: 0 = 愤怒(Angry) 1 = 厌恶(Disgust) 2 = 恐惧(Fear) 3 = 快乐(Happy) 4 = 悲伤(Sad) 5 = 惊讶(Surprise) 6 = 中性(Neutral) 3. **数据集规模**: - 训练集:28,709张图像 - 测试集:3,589张图像

2025-01-18

鸢尾花分类项目 源代码与数据集 iris-flower-classification-project

鸢尾花分类项目 源代码与数据集 iris-flower-classification-project

2025-01-18

使用CNN和LSTM构建图像描述生成器 源代码和部分数据

使用CNN和LSTM构建图像描述生成器 源代码和部分数据

2025-01-18

使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification

使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification

2025-01-18

【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes

【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes

2025-01-17

使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection

使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection

2025-01-17

使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn-eye-dataset-new

使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn_eye_dataset_new

2025-01-17

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad

2025-01-17

青少年科技创新大赛改革:聚焦15至24岁参赛者的制度优化与创新能力培养

竞赛报告,调研报告:2025全国青少年科技创新大全国青少年科技创新大赛调研报告 一、大赛概述 全国青少年科技创新大赛(以下简称“大赛”)始创于1982年,由中国科学技术协会、国家自然科学基金委、共青团中央、全国妇联等多家单位联合主办。其主要目标是发掘和培养青少年科技创新的后备人才。随着科技和教育的发展,大赛的形式和内容不断演进,以适应时代需求。 二、《全国青少年科技创新大赛实施办法(试行)》的主要改革内容 2025年1月,中国科协办公厅发布了《全国青少年科技创新大赛实施办法(试行)》,对大赛的参赛对象、组织方式、赛制规则等方面进行了重大改革。 1. 参赛对象的调整 新的《实施办法》明确规定,大赛的参赛对象为15至24岁校内外青少年,不再接受低龄段少年儿童和科技辅导员参赛。此举旨在防止低龄段参赛者的舞弊现象,确保比赛的公平性,并更好地激发和保护青少年的创新热情和科学探究精神。 2. 组织方式的改革 在组织方式上,大赛将广泛汇聚全国学会和地方科协的优质赛事资源,打造青少年科技竞赛矩阵。通过这种方式,不仅提升赛事的专业性和权威性,也能更好地推动科技教育资源的共享与协同。 3. 赛制规

2025-01-17

2025年世界大学生超级计算机竞赛:赛制解析、技术挑战及全球影响力分析

竞赛报告 2025年 世界大学生超级计算机竞赛 详细实用调研报告 2025年世界大学生超级计算机竞赛(ASC25) 2025年1月15日,2025年世界大学生超级计算机竞赛在北京正式启动。这次比赛吸引了来自全球超过300支高校队伍报名参加,采用了“预赛+决赛”的双赛制形式。 竞赛概况 启动仪式 日期:2025年1月15日 地点:北京 参会人员:高性能计算和人工智能领域的院士、专家、参赛师生代表等。 参赛情况 报名队伍:全球超过300支高校队伍。 赛制:预赛+决赛双赛制 预赛:参赛队伍需完成指定任务,并提交详细的集群设计和应用优化方案。通过预赛评估选拔的队伍将晋级决赛。 决赛:将在2025年5月10日至14日在青海大学举行。 赛题方向 主要包括蛋白质结构预测等领域的前沿科学和人工智能成果。 竞赛目的 推动超算青年人才交流和培养。 通过科技竞赛和前沿应用相结合,促进创新意识和科技能力的培养。 重要意义 此次竞赛不仅是对参赛学生计算能力的一次检验,也是促进国际间学术交流和技术合作的重要契机。

2025-01-17

pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成

pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成

2025-01-17

音乐播放器源码+可执行程序+测试音乐+截图 快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息 3,显示播放时间进度 4,拖

音乐播放器源码+可执行程序+测试音乐+截图。快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件。 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息。 3,显示播放时间进度。 4,拖

2025-01-07

【信息技术领域】2025中国程序员工作与生活平衡调查报告:超长工时、职业倦怠及混合办公模式分析

内容概要:《2025中国程序员工作与生活平衡(WLB)调查报告》揭示了中国程序员在数字化浪潮下的真实工作与生活状况。报告指出,尽管社会对“996”工作制的讨论不断,但超长工时在互联网行业仍然是常态,如得物(63.8小时/周)和拼多多(62.4小时/周)。混合办公模式逐渐成为主流妥协方案,47%的中国职场人偏好这种模式。加班补偿落实情况堪忧,法律规定与企业实践存在鸿沟。职业倦怠在IT行业尤为严重,71%的员工感到筋疲力尽,主要由工作强度和技术压力引发。程序员的幸福感受城市和企业类型的双重影响,一线城市的高薪伴随高昂生活成本,大厂的光环背后是激烈的“内卷”。报告呼吁程序员主动管理边界,持续学习并做出理性选择;企业应回归人性化管理,建立公平的回报机制,并利用技术为员工减负。 适合人群:关注程序员工作与生活平衡的从业者、企业管理者及政策制定者。 使用场景及目标:①帮助程序员了解行业现状,合理规划职业路径;②为企业提供改善员工福利和管理方式的参考;③为政策制定者提供制定相关政策的依据。 其他说明:报告强调,探寻程序员工作与生活平衡之道,不仅需要个人的努力,还需要企业和社会的共同努力。混合办公模式和AI技术的应用为未来的工作生态带来了新的机遇和挑战。

2025-07-23

【新能源汽车行业】2025年Q2中国新能源汽车市场数据分析:销量增长、政策支持与品牌策略综述了202

2025年Q2中国新能源汽车市场数据分析报告内容概要:2025年第二季度,中国新能源汽车市场继续保持强劲增长,销量达312.1万辆,同比增长26.7%,市场渗透率突破53.3%。比亚迪以68.8%的市场份额领跑,吉利和上汽通用五菱紧随其后。新势力品牌中,小鹏汽车表现突出,交付量创新高,而蔚来和理想汽车则未达预期。政策方面,国家和地方政府通过补贴政策组合拳和基础设施建设,激活了消费需求并引导产业升级,尤其是新能源汽车下乡活动显著推动了农村市场的增长。技术上,L3级自动驾驶面临商业化瓶颈,但智能驾驶技术正在特定场景中逐步突破。电池技术和车网互动等领域也取得了一定进展,但仍需进一步数据支持。 适合人群:汽车行业分析师、投资者、政府政策制定者、新能源汽车制造商及相关从业者。 使用场景及目标:①帮助行业分析师和投资者了解中国新能源汽车市场的最新动态和发展趋势;②为政府政策制定者提供决策依据,以优化未来的政策导向和支持措施;③指导新能源汽车制造商制定市场策略和技术研发方向。 其他说明:本报告强调了政策支持、品牌策略和技术进步对中国新能源汽车市场的重要影响,同时也指出了市场面临的挑战,如合资品牌的转型滞后、技术商业化瓶颈和区域发展不平衡等问题。未来市场机遇集中在出口潜力、下沉市场空间和技术突破窗口,预计2025年全年新能源车销量将突破1600万辆,其中政策直接拉动增量约占总销量的23%。

2025-07-23

创新研报|2024大模型训练数据白皮书-阿里研究院.pdf.pdf

创新研报|2024大模型训练数据白皮书_阿里研究院.pdf.pdf

2025-08-04

【大模型技术】中国企业私有数据处理与向量化技术调研:技术路径、行业实践及未来展望

内容概要:本文深入探讨了中国企业私有数据处理与向量化技术在大模型时代的应用现状、挑战及未来趋势。文章指出,不同于通用大模型依赖公开数据训练,私域大模型通过整合企业内部数据,能够精准响应垂直场景需求,但也面临数据清洗、向量化及存储三大技术挑战。具体而言,不同行业的数据特性决定了差异化的技术路径,如金融行业需处理交易时序数据,医疗行业需标准化非结构化病历文本,零售行业则关注用户行为的多模态融合。此外,合规与安全风险、成本效益平衡也是重要考量。文章还分析了向量化技术的选择,如Word2Vec、BERT等模型在不同场景下的优劣,并介绍了向量数据库的市场格局及选型建议。最后,报告提出了分阶段实施路径及行业差异化策略,强调技术迭代与产业需求的动态平衡对企业赢得“数据主权”竞争的重要性。 适用人群:对私有数据处理与向量化技术感兴趣的从业者,尤其是金融、医疗、零售等行业的数据科学家、算法工程师及CTO等技术决策者。 使用场景及目标:①帮助技术团队选择合适的向量化技术和向量数据库,提升数据处理效率;②指导企业在私有数据处理过程中规避安全合规风险;③为企业制定私有大模型部署策略提供参考,确保技术投入带来最大商业价值。 其他说明:随着大模型技术的发展,国产化替代和技术闭环的趋势日益明显,多模态技术和轻量化部署将成为未来发展方向。企业应根据自身需求和技术能力,分阶段推进私有数据处理与向量化技术的应用,确保技术落地的可行性和安全性。

2025-07-23

windows下 将.epub转pdf格式的安装包 亲测有效,只需要一行命令 离线使用,可商用 文档中的图片都可以转换,字体可以选择,效果很好

windows下 将.epub转pdf格式的安装包 亲测有效,只需要一行命令。离线使用,可商用。文档中的图片都可以转换,字体可以选择,效果很好。

2025-06-13

hivesql全量百亿级拉链表 pyspark 拉链表数据架构 sql全量百亿级拉链表

hivesql全量百亿级拉链表 pyspark 拉链表数据架构 sql全量百亿级拉链表 hivesql全量百亿级拉链表,第一次初始化数据-参考代码 pyspark 拉链表数据架构-union后的大拉链表数据多段连续null值向上填充思路1 pyspark 拉链表数据架构-union后的大拉链表数据多段连续null值向上填充思路2 pyspark全量百亿级拉链表,第一次初始化数据及后续更新-参考代码 sql全量百亿级拉链表,第一次初始化数据及后续更新-参考代码 union后的大拉链表数据多段连续null值向上填充思路1 union后的大拉链表数据多段连续null值向上填充思路2

2025-03-04

亲测可用 知乎热榜爬虫源码

知乎热榜爬虫源码

2025-02-26

2025年Q1中国新能源汽车市场数据分析报告

包含:- 品牌名称- 月度销量(单位:万辆)- 均价(万元)- 核心技术创新点(如电池技术、智能驾驶)

2025-02-26

10道Python文件操作的面试题 包含:1. 题目描述 难度:中等 2. 示例输入 输出 3. 完整代码 带注释 4. 考察知识点

10道Python文件操作的面试题 包含:1. 题目描述 难度:中等 2. 示例输入 输出 3. 完整代码 带注释 4. 考察知识点

2025-02-26

亲测有效 抽奖程序4.0 抽奖过程随机展示动画 一次抽奖多人正确展示结果

【功能清单】 核心功能: - 批量导入TXT/CSV文件(支持多编码) - 动态抽奖动画(2秒随机闪烁+聚焦效果) - 多人中奖记录合并显示(逗号分隔) - 中奖权重设置(CSV第二列) - 历史记录导出(单条记录包含所有中奖者) 交互增强: - 深色/浅色双主题切换 - MP3音效反馈(需ding.mp3文件) - 树形表格展示历史记录 - 实时人数统计显示 高级设置: - 排除已中奖者模式 - 中奖人数调节(1-10人) - 时间格式自定义(3种预设) - 音效开关控制 异常处理: - 智能编码回退机制 - 文件错误精确定位 - 操作防呆设计

2025-01-23

亲测有效 抽奖程序2.0 支持.txt文件导入 自动识别多种编码格式 实时显示导入人数 重复抽奖不限制次数 永久保留记录

功能全景图 功能模块 具体能力 文件管理 - 支持.txt文件导入 - 自动识别多种编码格式 - 实时显示导入人数 抽奖核心 - 随机选取参与者 - 重复抽奖不限制次数 - 实时显示抽奖结果 历史记录 - 时间戳精确到秒 - 永久保留记录(直到程序关闭) - 最新记录置顶显示 用户交互 - 友好的错误弹窗 - 操作成功反馈 - 界面元素状态联动 扩展能力 - 可通过修改encodings列表支持更多编码 - 布局易于调整尺寸和样式 使用流程 导入名单 点击导入按钮 → 选择.txt文件 → 自动识别编码 → 显示人数 执行抽奖 点击抽奖按钮 → 随机选取 → 显示结果 → 记录历史 查看历史 滚动列表框 → 查看完整记录 → 最新记录始终置顶 错误处理 文件读取失败 → 弹窗提示原因 → 建议解决方案

2025-01-23

亲测有效 抽奖程序3.0 多格式导入(TXT/CSV) 权重抽奖 重复抽奖/去重模式切换 中奖人数灵活配置 音效

核心功能** 1. 智能文件管理 - 多格式导入(TXT/CSV) - 批量文件处理(自动合并名单) - 智能编码识别(UTF-8/GBK/GB18030等) - 历史记录导出(CSV/TXT) 2. 高级抽奖规则 - 中奖者排除机制 - 权重抽奖(CSV导入权重值) - 多人同时中奖(1-10人可调) - 重复抽奖/去重模式切换 3. 交互增强 - 实时音效反馈(MP3支持) - 深色/浅色主题切换 - 动态加载动画 - 树形表格历史记录(支持排序) #### **特色功能** 4. 定制化设置 - 时间格式自定义(3种预设+自定义) - 中奖人数灵活配置 - 音效开关控制 5. 异常处理 - 文件错误精准定位 - 智能编码回退机制 - 操作防呆设计(未导入名单禁用抽奖)

2025-01-23

亲测有效 抽奖程序1.0 可以直接运行

抽奖程序功能描述: 1. 有一个输入框,用户可以输入参与抽奖的人员名单,每输入一个名字后按下回车键或点击添加按钮。 2. 有一个按钮,点击后进行抽奖。 3. 抽奖的结果展示在屏幕上。 4. **重新抽奖**:点击“重新抽奖”按钮后,会清空当前的中奖结果,并重新启用“开始抽奖”按钮。 5. **显示抽奖记录**:每次抽奖后,中奖者的名字和抽奖时间都会被记录在 `history` 列表中,并显示在 `Text` 组件中。

2025-01-23

【机器学习实战高阶】基于深度学习的图像分割 源代码与数据集

【机器学习实战高阶】基于深度学习的图像分割 源代码与数据集

2025-01-20

基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition

基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition

2025-01-20

【机器学习实战中阶】书籍推荐系统 数据集 archive

【机器学习实战中阶】书籍推荐系统 数据集 archive

2025-01-20

使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project

使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project 手语识别与机器学习 项目构思精要:本项目旨在帮助聋哑人,通过创建一个能够识别手语的检测器,促进他们与他人之间的交流。此手语识别系统利用机器学习技术,为聋哑人群体提供了一个宝贵的沟通工具。

2025-01-20

【机器学习实战中阶】基于机器学习的人格预测,测试你的人格

【机器学习实战中阶】基于机器学习的人格预测,测试你的人格

2025-01-20

价格预测器 源代码与数据集

这段代码的目的是读取一个包含价格的数据集,并对其进行基本的信息查看。然后,基于数据集中的加权价格绘制折线图,以便直观地查看价格趋势。接下来,代码将加权价格中的 0 值替换为 NaN,并使用前向填充方法(ffill)来填充这些 NaN 值,以避免数据中的 0 值对模型训练产生影响。最后,再次绘制折线图,显示填充后的数据,确保数据处理的效果。 1. **读取数据集**: - 使用 `pd.read_csv` 函数读取 CSV 文件,并将 "Date" 列设置为索引。 - 使用 `data.info()` 查看数据集的基本信息。 - 使用 `data.head()` 和 `data.tail()` 分别显示数据集的前 5 行和最后 5 行。 2. **绘制初始折线图**: - 使用 Plotly 的 `go.Scatter` 创建一个折线图数据对象,x 轴为日期,y 轴为加权价格。 - 使用 `py.iplot` 在 Jupyter Notebook 中显示折线图。 3. **数据处理**: - 使用 `replace` 方法将加权价格中的 0

2025-01-19

基于机器学习智能文本摘要 深度学习 注意力机制源码 自然语言处理 源代码与数据集

### 背景介绍 该数据集由来自亚马逊的精品食品评论组成,涵盖了超过10年的数据,包含截至2012年10月的所有约500,000条评论。这些评论不仅包含了产品和用户信息、评分,还有纯文本形式的评论内容。值得注意的是,此数据集还收录了亚马逊所有其他类别的商品评论。 ### 内容 - **Reviews.csv**:从名为`Reviews`的SQLite表中提取。 - **database.sqlite**:包含一个名为`Reviews`的表,即上述CSV文件的数据源。 ### 数据详情 - 时间范围:1999年10月至2012年10月 - 总评论数:568,454条 - 用户总数:256,059位 - 涉及产品数:74,258种 - 审评次数超过50次的用户数:260位

2025-01-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除