拓端tecdat|R语言k-Shape时间序列聚类方法对股票价格时间序列聚类

本文使用k-Shape时间序列聚类方法,结合R语言,探讨了企业股票价格时间序列的聚类分析,强调了时间序列形状提取和基于形状的距离(SBD)在聚类中的作用。研究发现,业务关系密切的公司股票价格变动存在相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例

KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例

,时长06:05

本文我们将使用k-Shape时间序列聚类方法检查与我们有业务关系的公司的股票收益率的时间序列。

企业对企业交易和股票价格

 
在本研究中,我们将研究具有交易关系的公司的价格变化率的时间序列的相似性。
由于特定客户的销售额与供应商公司的销售额之比较大,当客户公司的股票价格发生变化时,对供应商公司股票价格的反应被认为更大。 

 k-Shape

k-Shape [Paparrizos和Gravano,2015]是一种关注时间序列形状的时间序列聚类方法。在我们进入k-Shape之前,让我们谈谈时间序列的不变性和常用时间序列之间的距离测度。

时间序列距离测度

欧几里德距离(ED)和动态时间规整(DTW)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值