R语言使用混合模型GMM进行聚类

本文介绍了在R语言中使用高斯混合模型(GMM)进行聚类的方法。通过一个双峰分布的例子展示了混合模型在识别不同来源数据的优势。GMM聚类涉及选择合适的统计分布(如正态分布),并利用EM算法拟合数据。文章提供了代码示例,展示如何获取数据的后验概率,并讨论如何根据阈值将数据分配到聚类中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


全文链接:http://tecdat.cn/?p=6112

混合模型是k个分量分布的混合,它们共同形成混合分布:F(x )f(x)点击文末“阅读原文”获取完整代码数据)。

F(x )= Σk = 1ķαķFķ(x )f(x)=∑k=1Kαkfk(x)

为什么要使用混合模型?

让我们通过一个例子激发您为何使用混合模型的原因。让我们说有人向您展示了以下密度图:

p <- ggplot(faithful, aes(x = waiting)) +
  geom_density()
p

faa5e5bdd464cc905e1af62ffdcc7811.png

相关视频

我们可以立即看到所得到的分布似乎是双峰的(即有两个凸起),表明这些数据可能来自两个不同的来源。

head(faithful)
##   eruptions waiting
## 1     3.600      79
## 2     1.800      54
## 3     3.333      74
## 4     2.283      62
## 5     4.533      85
## 6     2.883      55

该数据是2列data.frame

  • 火山喷发:喷发时间(分钟)

  • 等待:喷发之间的时间(分钟)

p + 
  geom_vline(xintercept = 53, col = "red", size = 2) + 
  geom_vline(xintercept = 80, col = "blue", size = 2)

c1931b331222b463d635bf2e98f1bff2.png


点击标题查阅往期内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值