全文链接:http://tecdat.cn/?p=30508
现实情况是,我们经常要处理多个自变量和一个因变量之间的关系,此外,虽然通过做散点图可以发现非线性关系,但很难归因其形式,多项式回归在广义线性模型中,由于其不可解释的系数,降低了模型的有用性(点击文末“阅读原文”获取完整代码数据)。
本文使用的广义加性模型提供了一种首选方案来研究多个自变量与因变量之间的关系,而无需事先了解因变量和自变量之间的关系,而是使用非线性平滑项来拟合模型。
GAM模型说明
广义相加模型(GAM:Generalized Additive Model),它模型公式如下:有p个自变量,其中X1与y是线性关系,其他变量与y是非线性关系,我们可以对每个变量与y拟合不同关系,对X2可以拟合局部回归,X3采用光滑样条,不必采用统一的关系,而最终结果‘加’在一起就可以了。
相关视频
研究目的:
最近我们被要求探讨公交专用道,工作日,向西方向,早高峰,停驻时间系数,延误系数对行程时间变异度的影响。
预期结果
所有因素中,公交专用道 对 行程时间变异度 的影响最大,且可以减少行程时间变异度。
变量说明
序号 | 自变量 | 变量类型 |
---|---|---|
1 | 公交专用道 | 0.1 变量 |
2 | 工作日 | 0.1 变量 |
3 | 向西方向 | 0.1 变量 |
4 | 早高峰 | 0.1 变量 |