结构方程模型SEM、路径分析房价和犯罪率数据、预测智力影响因素可视化2案例...

本文探讨了结构方程模型(SEM)和路径分析在研究房价、犯罪率和智力因素影响的关系。通过多元回归、路径模型和潜在变量分析,展示了SEM如何处理复杂的数据关系。案例中,SEM揭示了犯罪率与房价的间接联系,受到污染物水平的调节。此外,还介绍了如何处理分类数据和缺失值,以及SEM在处理潜在变量时的模型诊断和调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:http://tecdat.cn/?p=25044

在本文,我们将考虑观察/显示所有变量的模型,以及具有潜在变量的模型点击文末“阅读原文”获取完整代码数据)。

1 简介

第一种有时称为“路径分析”,而后者有时称为“测量模型”。

2 进行简单的多元回归

SEM 在很大程度上是回归的多元扩展,我们可以在其中一次检查许多预测变量和结果。SEM 还提供了检查潜在结构(即未观察到某些变量的地方)的创新。更具体地说,“结构方程”的概念是指我们有不止一个方程表示协方差结构模型,其中我们(通常)有多个标准变量和多个预测变量。

让我们从简单的演示开始,即 SEM 中的路径模型可以概括简单的单预测变量-单结果回归。我们将检查人口普查中的房价数据查看文末了解数据获取方式,以回顾相关和回归中的重要概念。这是一个很好的回归数据集,因为有许多相互依赖的变量:犯罪,污染物,财产的年龄,等等。

这是上面的单预测回归,作为路径模型运行 :

#示例数据集,包括按人口普查区划分的房屋价格

snml <- otnou %>% dplyr::select(
  cmv, #住宅的中位数价值,以千计
  crm, #城镇人均犯罪率
  nx, #一氧化氮浓度
  lsa, #地位较低的人的比例
  rd #靠近放射状的高速公路
  ) %>% mutate
summary

a5ba48354586e9f8c23fe125c602a914.png

为了比较,输出 lm()

summary(lm

ec5e34889167ea404fa76ddf771d26ed.png

回归系数是相同的(好!)。有一点需要注意的是,我们在输出中没有截距。这突出了一个重要的区别,基本的SEM经常关注数据的协方差结构。我们也可以包括均值,但通常只有当它与我们的科学问题有关时才会包括。例如,男性和女性在抑郁症潜在因素的平均水平上是否有差异?

相关视频

2.1 平均结构

在这种情况下,我们可以要求在模型中包含平均值(截距)  mean=TRUE

summary(lvt)

40ffc82003f5a8db748139c520752a88.png

2.2 模型参数详情

"参数 "表提供了模型中哪些参数是必须被估计,以及用户在模型语法中要求哪些参数的重要摘要。

Table(mv)

b2ca850597bba5c1e80edd7d2f2ae297.png

在这里,'user' 指的是我们在语法中明确请求的参数,'free' 列的非零值表示模型自由估计的参数。

请注意,我们也可以得到标准化的估计值 。这是 SEM 中更复杂的主题,因为我们可以仅针对潜在变量(std.lv)或观察变量和潜在变量(std.all)进行标准化。后者通常是 SEM 论文中作为标准化估计报告的内容。

2.3 标准化估计

stdln(v, type)

be9b1847d5ca3c06822254930c06861d.png

3 住房数据的路径分析

让我们看一些更有趣的东西。如果我们认为一氧化氮 ( nox) 水平也可以预测房价和犯罪率,那会怎样?我们可以将其添加为标准多元回归中的预测变量。

此外,我们假设房屋靠近大型高速公路(rad)预测一氧化氮的浓度,从而预测较低的房价?

模型语法可以指定为:

sem(ln2, data=toSll)

模型看起来像这样

Paths

23542f1802e4d20e3df180339884d237.jpeg


点击标题查阅往期内容

13fff710068fdbf031e3ce3ab6a493b6.jpeg

结构方程模型 SEM 多元回归和模型诊断分析学生测试成绩数据与可视化

outside_default.png

左右滑动查看更多

outside_default.png

01

a6998bba4ddbde9a6baec5162cfa2760.jpeg

02

4b6c5c1c6ced036d8549585e5d3bfef2.jpeg

03

e83a6cc8e77ba0beed2bbc7d980dec5a.jpeg

04

8e5a0a42e5a0020c03c4c1eb86856baf.jpeg

这是文本输出:

summary

9729803aa7b4cb2b26d88ba694c0d693.png

需要注意的几点:

  • 请注意警告:“一些观察到的差异(至少)是其他差异的 1000 倍。”

  • 我们的假设似乎都得到了支持。

  • 模型卡方非常显着,表明全局模型拟合不佳。

3.1 调整

当模型中变量的方差显着不同(数量级)时,参数估计可能会遇到困难。鉴于上述警告,让我们来看看。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值