R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据...

本文介绍了使用R语言进行非参数方法的核回归平滑估计和K-NN(K近邻算法)来对心脏病数据进行分类预测。通过核方法进行函数估计,讨论了带宽选择对结果的影响,并展示了高维应用和K-NN算法的实现。文章探讨了非参数方法的优势与局限性,并提供了实际代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文链接:http://tecdat.cn/?p=22181

本文考虑一下基于核方法进行分类预测点击文末“阅读原文”获取完整代码数据)。

注意,在这里,我们不使用标准逻辑回归,它是参数模型。

相关视频

非参数方法

用于函数估计的非参数方法大致上有三种:核方法、局部多项式方法、样条方法。
非参的函数估计的优点在于稳健,对模型没有什么特定的假设,只是认为函数光滑,避免了模型选择带来的风险;但是,表达式复杂,难以解释,计算量大是非参的一个很大的毛病。所以说使用非参有风险,选择需谨慎。
非参的想法很简单:函数在观测到的点取观测值的概率较大,用x附近的值通过加权平均的办法估计函数f(x)的值。

核方法

当加权的权重是某一函数的核,这种方法就是核方法,常见的有Nadaraya-Watson核估计与Gasser-Muller核估计方法,也就是很多教材里谈到的NW核估计与GM核估计,这里我们还是不谈核的选择,将一切的核估计都默认用Gauss核处理。
NW核估计形式为:

outside_default.png

GM核估计形式为:

outside_default.png

式中outside_default.png

数据

使用心脏病数据,预测急诊病人的心肌梗死,包含变量:

心脏指数
心搏量指数
舒张压
肺动脉压
心室压力
肺阻力
是否存活
既然我们知道核估计是什么,我们假设k是N(0,1)分布的密度。在x点,使用带宽h,我们得到以下代码

dnorm(( 心搏量指数-x)/bw, mean=0,sd=1)
weighted.mean( 存活,w)}
plot(u,v,ylim=0:1,

outside_default.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值