全文链接:https://tecdat.cn/?p=36613
在本文中,我们旨在利用深度学习技术,特别是TensorFlow框架下的Keras库,对WISDM(无线传感器数据挖掘)数据集进行活动识别。(点击文末“阅读原文”获取完整代码数据)。
相关视频
WISDM数据集包含了从用户身上佩戴的加速度传感器收集的三轴加速度数据,这些数据被用于识别用户的日常活动,如走路、跑步、跳跃等。通过对这些数据的分析,我们可以为健康监测、人机交互等领域提供有价值的见解。
数据准备
首先,我们导入了必要的Python库,包括NumPy用于数值计算、TensorFlow用于深度学习建模、Pandas用于数据处理、Seaborn和Matplotlib用于数据可视化。为了确保实验的可重复性,我们设置了随机种子。
t64) df.dropna(axis=0, how='any', inplace=True)
数据探索
在数据准备阶段之后,我们对数据集进行了初步的探索。通过Seaborn库的countplot
函数,我们绘制了不同活动类型的频数分布图,以了解数据集中各种活动类型的分布情况。
sns.countplot(x = 'activity',
通过此图,我们可以直观地看到数据集中各种活动类型的分布情况,为后续的模型训练和评估提供有价值的参考。
为了直观地了解数据集中用户活动记录的分布情况,我们绘制了用户ID的频数分布图。通过Seaborn库的countplot
函数,我们观察到不同用户之间的活动记录数量存在差异。
order = df.user_id.value_counts().index); plt.title("Records per user");
for ax in axis:
ax.legend(loc='lower left', bbox_to_anchor=(1.0, 0.5))
此外,为了更深入地了解用户活动数据的特征,我们定义了一个名为plot_activity
的函数,用于绘制特定活动类型的三轴加速度数据图。通过这个函数,我们可以直观地比较不同活动类型在加速度数据上的差异。
plot_activity(