Python TensorFlow双向Bi-LSTM长短期记忆神经网络深度学习可视化用户传感器活动数据...

全文链接:https://tecdat.cn/?p=36613

在本文中,我们旨在利用深度学习技术,特别是TensorFlow框架下的Keras库,对WISDM(无线传感器数据挖掘)数据集进行活动识别。点击文末“阅读原文”获取完整代码数据)。

相关视频

WISDM数据集包含了从用户身上佩戴的加速度传感器收集的三轴加速度数据,这些数据被用于识别用户的日常活动,如走路、跑步、跳跃等。通过对这些数据的分析,我们可以为健康监测、人机交互等领域提供有价值的见解。

d362d2162d409f2bc72bb72725c9437c.png

数据准备

首先,我们导入了必要的Python库,包括NumPy用于数值计算、TensorFlow用于深度学习建模、Pandas用于数据处理、Seaborn和Matplotlib用于数据可视化。为了确保实验的可重复性,我们设置了随机种子。

t64) df.dropna(axis=0, how='any', inplace=True)

65c9edb907683557746b726d8da91bc7.png

数据探索

在数据准备阶段之后,我们对数据集进行了初步的探索。通过Seaborn库的countplot函数,我们绘制了不同活动类型的频数分布图,以了解数据集中各种活动类型的分布情况。

sns.countplot(x = 'activity',

d4c7b442e5536bcf7991f45805116163.jpeg

通过此图,我们可以直观地看到数据集中各种活动类型的分布情况,为后续的模型训练和评估提供有价值的参考。

为了直观地了解数据集中用户活动记录的分布情况,我们绘制了用户ID的频数分布图。通过Seaborn库的countplot函数,我们观察到不同用户之间的活动记录数量存在差异。

order = df.user_id.value_counts().index); plt.title("Records per user");

5929cf77e85309d96f1e4e9bbece598d.jpeg

for ax in axis:
        ax.legend(loc='lower left', bbox_to_anchor=(1.0, 0.5))

此外,为了更深入地了解用户活动数据的特征,我们定义了一个名为plot_activity的函数,用于绘制特定活动类型的三轴加速度数据图。通过这个函数,我们可以直观地比较不同活动类型在加速度数据上的差异。

plot_activity(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值