全文链接:https://tecdat.cn/?p=37371
本文融合了多种技术,其中 LSTM(长短期记忆网络)和 GARCH(广义自回归条件异方差)模型尤为关键。LSTM 在处理时间序列数据方面独具优势,能够捕捉长期依赖关系,为金融预测提供强大支持。GARCH 模型则能有效捕捉金融时间序列中的波动聚类现象,提升预测准确性(点击文末“阅读原文”获取完整代码数据)。
视频
通过对这套代码的详细解读和分析,包括对 LSTM 和 GARCH 等关键模型的深入探讨,我们期望为金融研究和实践注入新活力,开辟新思路。
引言
在当今复杂多变的金融市场环境中,深入的数据分析和精准的模型构建对于理解市场动态、预测价格走势以及制定有效的投资策略至关重要。
创新点
融合多种先进模型:综合运用了 GARCH 模型和 LSTM 模型,结合了传统金融模型和深度学习方法的优势,为金融数据的分析和预测提供了更全面和精确的手段。
精细化的特征工程:通过计算对数收益和过去 10 天的波动率等特征,深入挖掘金融数据中的潜在信息,提高了模型的输入质量和预测性能。
灵活的数据处理:包括数据的转置、索引重置和缺失值处理等操作,能够适应不同结构和质量的金融数据,增强了其通用性和实用性。
代码内容与分析
导入所需的库
import pandas as pdfrom pandas.plotting import autocorrelation\_plotfrom pandas\_datareader import dataimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsimport math
丰富且强大的库导入为后续的数据处理和分析奠定了坚实的基础。Pandas 库用于数据读取和操作,Matplotlib 和 Seaborn 则用于数据可视化,Numpy 提供高效的数值计算支持,Math 库用于数学运算。
读取包含金融数据的 CSV 文件
df = pd.read_csv(r'inpv')print(df.head())print(df.shape)
此部分代码实现了从 CSV 文件中读取金融数据,并通过打印数据头部和形状,初步了解数据的结构和规模。
在此我们可以看到,我们有 254 列,对应着我们拥有金融数据的 254 个工作日,还有 10 列,它们是我们所拥有的 10 个金融指标。
数据清洗
转置数据框
由于我们处理的是时间序列数据,应当将日期作为一列,因此我们为此使用转置(transpose)函数。
df = df.transpose()print(df.head())print(df.shape)
转置操作有助于以更合适的方式组织数据,便于后续的分析。
重置数据框的索引
df = df.reset_index()print(df.head())
重置索引确保数据的索引具有一致性和准确性。
import pandas as pdimport matplotlib.pyplot as plt# 加载数据file\_path = '/mnt/data/financial\_dataaned.csv'df = pd.read\_csv(file_path)# 显示数据的前几行以了解其结构df.head()
数据已成功加载。接下来,我将进行以下分析和可视化:
股