视频讲解:ARIMA-LSTM注意力融合模型跨行业股价预测应用

全文视频链接:tecdat.cn/?p=42866

分析师:Chengcheng Li

在协助券商构建股价预测系统时,团队曾面临高频波动市场的建模困境。传统ARIMA模型对极端行情响应迟滞,单一LSTM模型则存在长期依赖难题。基于该项目实践,我们提出ARIMA-LSTM注意力融合框架,通过双轨协同机制实现预测精度突破(点击文末“阅读原文”查看全文 )。

本视频将系统阐述:
1)动态特征工程如何适应A股"政策市"特性
2)注意力机制优化LSTM长周期捕捉能力
3)跨行业实证中的适应性策略

视频

流程图解

 

ARIMA-LSTM协同机制

提出双阶段预测流程

  1. 线性趋势分解

    利用ARIMA(p,d,q)提取基线趋势
    设时序数据为S_t,ARIMA预测值为:
    预测 = f(历史S_{t-1},S_{t-2},…,参数p,d,q)

  2. 非线性残差学习

    将残差R_t = S_t - ARIMA预测值输入LSTM:
    LSTM输出 = g(R_t, R_{t-1},…,隐藏单元数)

  3. 注意力加权融合(创新点)

    引入动态权重系数α:
    最终预测 = α×ARIMA预测 + (1-α)×LSTM预测

特征工程突破

针对A股特有波动特性:

  • 行业轮动因子

    :申万一级行业指数联动

  • 政策敏感度指标

    :监管政策文本情感分析

  • 资金异动特征

    :北向资金日内流向变化

scss
体验AI代码助手
代码解读
复制代码

# 注意力机制实现核心代码def attention_layer(inputs):    # 注意力权重计算    attention_weights = tf.keras.layers.Dense(1, activation='tanh')(inputs)    attention_weights = tf.nn.softmax(attention_weights, axis=1)        # 特征加权融合    context = tf.reduce_sum(attention_weights * inputs, axis=1)    return context# 模型构建示例inputs = tf.keras.Input(shape=(时间步长, 特征数))lstm_out = LSTM(64, return_sequences=True)(inputs)attention_out = attention_layer(lstm_out)outputs = Dense(1)(attention_out)

实证分析

数据准备

数据源:沪深交易所2018-2023年日频数据

 

  • 样本构成

    行业类别

    股票数量

    数据维度

    金融

    20只

    开盘价/收盘价/成交量等12因子

    消费

    15只

    新能源

    18只

点击标题查阅往期内容

以下是关于ARIMA-LSTM注意力融合模型在跨行业股价预测中的应用与研究的精选文章推荐,涵盖理论方法、行业案例及技术实现:


1. 金融领域:银行与股票市场预测

  • Python注意力机制Attention下CNN-LSTM-ARIMA混合模型预测中国银行股票价格
    • 多头注意力机制动态调整不同时间步的权重,解决长期依赖问题。

    • 提出结合ARIMA预处理与注意力机制CNN-LSTM的混合模型(AttCLX),通过ARIMA提取线性趋势,LSTM捕捉非线性时序特征,注意力机制加权关键时间点。

    • 在中国银行股票数据上,模型RMSE较单一ARIMA降低42%,较传统LSTM提升28%。

    • 核心内容

    • 技术亮点


2. 新能源行业:风电与能源股预测


3. 科技行业:苹果公司股价预测


4. 跨行业通用框架与优化


5. 挑战与解决方案

  • 数据异构性

    :不同行业数据频率差异(如日频股价vs.季度财报)需通过时间对齐层处理。

  • 实时性要求

    :通过增量式ARIMA更新与LSTM在线学习平衡预测时效性与精度。

预处理流程

  1. ADF平稳性检验

  2. Z-Score标准化

  3. 行业分类编码

模型性能对比

评价指标

  • MAE(平均绝对误差)

  • RMSE(均方根误差)

  • 方向准确率

模型类型

MAE

RMSE

准确率

ARIMA基准

0.032

0.045

65.3%

LSTM模型

0.028

0.041

68.7%

本文模型0.0210.03378.6%
行业适应性验证

行业类型

准确率提升

回撤控制增益

医药生物

81.2%

28%

新能源

76.8%

34%

金融

79.5%

22%

scss
体验AI代码助手
代码解读
复制代码

# 行业轮动因子计算示例def calc_sector_momentum(stock_data, sector_index):    # 计算股票与行业指数的相关性    corr = np.corrcoef(stock_data, sector_index)[0,1]        # 计算动量偏离度    momentum = stock_data[-20:].mean() - sector_index[-20:].mean()    return corr * momentum

应用场景与展望

实际应用案例

某券商智能投顾系统部署效果

  1. 组合优化:TOP30组合年化收益提升23%

  2. 风险预警:极端波动预警准确率达81%

  3. 交易信号:趋势拐点识别提前3.5个交易日

局限与改进方向

当前模型在高频场景存在计算瓶颈,未来重点突破:

  1. 实时增量学习框架

  2. 联邦学习跨机构协同

  3. 多模态数据融合(卫星图像/供应链数据)

关于分析师

在此对 Chengcheng Li 对本文所作的贡献表示诚挚感谢,他就读数据科学与大数据技术专业。擅长 R 语言、Python。在数理金融、数据可视化、建模预测方面有深入研究。Chengcheng Li 具备扎实的数据分析能力,能熟练运用相关工具和方法处理复杂数据,为本文的数据分析和模型构建提供了有力支持,在数据可视化呈现和预测模型优化等方面发挥了重要作用。

本文中分析的相关数据、代码、文档分享到会员群,扫描下面二维码即可加群! 


资料获取

在公众号后台回复“领资料”,可免费获取数据分析、机器学习、深度学习等学习资料。

点击文末“阅读原文”

获取完整智能体、

代码、数据和文档。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值