【机器学习】机器学习上机作业决策上述算法

本文详述了一次机器学习实验,使用决策树对鸢尾花数据集进行分类。手动实现了ID3算法,并与sklearn库的决策树模型进行了对比。实验结果显示,sklearn模型的预测准确率优于手动实现,这可能源于手动实现时的预处理不足或潜在错误。实验加深了对决策树算法的理解,尤其是信息增益计算和模型构建过程中的问题解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验内容

实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。
利用所学知识,使用决策树实现Iris鸢尾花数据集分类任务。
Iris鸢尾花数|据集:包含花萼长度、花萼宽度、花瓣长度、花瓣宽度四个属性,用于预测鸢尾花种类,标签0、1、2分别表示山鸢尾、变色鸢尾、维吉尼亚鸢尾。

二、实验设计

若实验内容皆为指定内容,则此部分则可省略;若实验内容包括自主设计模型等内容,则需要在此部分写明设计思路、流程,并画出模型图并使用相应的文字进行描述。

三、实验环境及实验数据集

简单介绍实验环境和涉及的数据集。

数据集:

下载地址:https://archive.ics.uci.edu/ml/datasets/Iris也可使用scklearn自带的Iris数据集
手动实现ID3,C4.5,CART的任意一种
使用scklearn实现对应决策树分类模型
比较手动实现模型和scklearn自带模型实现结果的差异并分析实验结果。

四、实验过程

实验过程包括整个实验流程说明和在编写代码时一些需要注意的事项,可附代码片段进行说明;
注:为了代码片段尽量的美观、统一,建议附代码片段时只附加关键的片段,不要全部粘贴,并尽量使用下面提供的网站进行代码高亮等格式转换后再粘贴。
https://highlightcode.com/

1. 加载鸢尾花数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐风—云端行者

喜欢请打赏,感谢您的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值