【TensorFlow深度学习】完整项目案例:从零搭建自然语言问答系统

完整项目案例:从零搭建自然语言问答系统

随着人工智能技术的飞速发展,自然语言处理(NLP)领域的问答系统(Question Answering System)成为了连接用户与信息的重要桥梁。本篇文章将带领读者从零开始,通过一个完整的项目案例,深入了解如何搭建一个基本的自然语言问答系统。我们将采用Python语言,结合TensorFlow和transformers库,实现一个基于BERT的问答模型。

1. 项目概览

我们的目标是构建一个能够从给定的文本段落中抽取答案的问答系统。具体来说,用户提出一个问题,系统在提供的文档中查找并返回最相关的答案片段。

2. 技术栈与环境准备
  • Python: 3.9+
  • TensorFlow: 2.x
  • transformers: Hugging Face的transformers库,用于预训练模型的加载和应用
  • pandas: 数据处理
  • numpy: 数学计算库

安装必要的库:

pip install tensorflow transformers pandas nump
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐风—云端行者

喜欢请打赏,感谢您的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值