如何用 LangChain 自定义 Chat Model —— 测试工程师实践指南

在大模型(LLM)测试或集成时,标准API往往无法满足所有需求。比如你想做Mock、集成私有模型或特殊的业务逻辑,这时候就需要自定义 chat model。LangChain 为此提供了标准化的接口和抽象,简单易用、扩展性强。本篇将以通俗易懂的方式,带你一步步实现一个自定义 chat model,并讲解背后的设计原理和测试要点。


一、什么是 LangChain 的 Chat Model?

LangChain 把“聊天模型”抽象为一种消息输入、消息输出的接口。
常见消息类型有:

消息类型说明
SystemMessage系统消息,通常作为对话的第一条,用来设定AI行为
HumanMessage用户输入消息
AIMessageAI 的回复,既可以是文本,也可以是函数调用的请求
FunctionMessage工具/函数调用结果
ToolMessage与 FunctionMessage 类似,随 OpenAI 新标准发展
…Chunk对应消息的“流式”输出切片,用于分步输出

流式消息Chunk:用于支持“边生成边输出”,比如大模型流式回复时每次只返回一部分token。


二、为什么要自定义 Chat Model?

  • Mock/测试场景:开发阶段,用模型“鹦鹉学舌”或固定返回,方便回归和接口验证。
  • 集成内部/私有模型:对接自研模型API,只需实现标准接口即可享受LangChain生态。
  • 特殊业务逻辑:比如对输入做特殊过滤、日志追踪、A/B测试等。

三、如何自定义 Chat Model?(手把手教程)

1. 继承 BaseChatModel 并实现 _generate 方法

下面实现一个“鹦鹉模型”:只返回用户最后一句话的前n个字符。

from typing import Any, Dict, List, Optional, Iterator
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from pydantic import Field

class ChatParrotLink(BaseChatModel):
    """
    一个简单的自定义Chat Model:返回最后一句话的前n个字符。
    初始化参数:
      - parrot_buffer_length: int 要返回的字符数
      - model_name: str 模型名称
    """

    model_name: str = Field(alias="model")
    parrot_buffer_length: int

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager=None,
        **kwargs: Any,
    ) -> ChatResult:
        last_message = messages[-1]
        tokens = last_message.content[: self.parrot_buffer_length]
        message = AIMessage(content=tokens)
        return ChatResult(generations=[ChatGeneration(message=message)])

    @property
    def _llm_type(self) -> str:
        return "echoing-chat-model-advanced"

要点说明

  • _generate 是核心——输入是历史消息列表(支持多轮),输出是 AI 的回复。
  • 必须有 _llm_type 属性,标记模型类型。

2. 如何实现流式输出(可选)

如果你想支持流式输出(比如边出字边推送),只需实现 _stream 方法:

def _stream(
    self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager=None, **kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
    last_message = messages[-1]
    tokens = last_message.content[: self.parrot_buffer_length]
    for t in tokens:
        yield ChatGenerationChunk(message=AIMessageChunk(content=t))
    yield ChatGenerationChunk(message=AIMessageChunk(content=""))  # 结束

3. 使用示例

# 实例化模型
model = ChatParrotLink(parrot_buffer_length=3, model="my_custom_model")

# 单轮对话
result = model.invoke([HumanMessage(content="hello!")])
print(result)   # 输出: 'hel'

# 多轮对话
result = model.invoke([
    HumanMessage(content="hello!"),
    AIMessage(content="Hi there!"),
    HumanMessage(content="Meow!"),
])
print(result)   # 输出: 'Meo'

# 流式输出
for chunk in model.stream("cat"):
    print(chunk.content, end="|")   # 输出: c|a|t||

四、测试工程师关注的实践要点

  1. 输入输出类型清晰:输入为消息对象列表,输出为 AIMessage/AIMessageChunk。
  2. 可Mock、可回归:自定义模型可方便Mock,做接口回归测试。
  3. 支持批量、流式、异步:只要实现相应接口,LangChain自动支持批量/异步/流式测试。
  4. Stop Token支持:如需终止符,务必让模型在输出中包含终止符,便于后续解析和对齐。
  5. 参数可追踪_identifying_params 支持回溯测试用例用的参数,便于监控和测试。

五、进阶建议与注意事项

  • 流式与异步建议结合使用:如需极致性能,考虑实现 _agenerate(异步生成)和 _astream(异步流式)。
  • 保密信息管理:如模型需API Key,建议用Pydantic的 SecretStr 避免日志泄露。
  • 文档与测试覆盖:写好类和参数文档字符串,方便团队成员和自动化工具读取。
  • 日志与监控:合理利用 run_manager,可自动回调日志、统计token用量、链路追踪等。

六、下一步

  • 你可以用同样方式包裹你自己的API、本地模型、甚至脚本Mock。
  • 也可深入 LangChain 文档,学习如何让模型返回结构化数据、如何追踪token用量等。

总结
自定义 Chat Model 提供了极大的灵活性,无论是接口测试、性能回归、Mock还是集成自研模型,LangChain 都给你准备好了标准化扩展点。测试工程师不需要深入AI模型细节,也能自信地实现并测试自己的Chat模型!


有问题欢迎留言交流,让测试更高效! 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值