MATLAB让你学个通透系列之数学运算

本文介绍了MATLAB中的数学运算功能,包括基础运算、向量和矩阵运算、微积分运算等,并详细讲解了常用数学函数的使用方法。同时,文章还介绍了多项式拟合与求解、数值积分和微分、常微分方程与偏微分方程的求解方法,以及符号计算工具箱的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、MATLAB之数学运算简介

二、函数介绍

1.三角函数

2.双曲线函数

3.复数函数

4.求和、乘积和差分

(1)求和函数

(2)乘积函数

(3)差分函数

5.最大值和最小值

6.简单统计命令

7.排序

8.关系和逻辑运算及多项式运算

(1)关系操作符

(2)逻辑操作符

(3)关系与逻辑函数

(4)多项式运算

三、如何进行矩阵的转置、求逆、行列式等运算?

1.矩阵转置:使用' '或者.'操作符

2.矩阵的逆:使用inv()函数

3.矩阵的行列式:使用det()函数

四、如何进行常见的三角函数、指数函数、对数函数等数学函数的计算?

五、如何进行多项式的求解和拟合?

1.使用polyfit函数进行多项式拟合。

2.使用polyval函数求解多项式函数值。

3.使用roots函数求解多项式的根。

六、如何进行数值积分和微分?

七、如何进行常微分方程(ODE)和偏微分方程(PDE)的求解?

求解常微分方程(ODE)

1.ode45函数

2.ode23函数

3.ode113函数

求解偏微分方程(PDE)

1.利用PDE工具箱求解PDE问题

2.利用偏微分方程工具箱求解PDE问题

八、如何使用MATLAB的符号计算工具箱进行符号计算?

1.打开MATLAB,并在命令窗口输入sym命令,创建符号计算变量:

2.输入需要计算的表达式。例如,要计算x+y的和与积,可以输入以下命令。

3.对符号计算变量进行操作。例如,可以计算表达式的导数、积分、简化等。

4.MATLAB还提供了一些特定的符号计算函数,如求解方程、矩阵运算、微分方程求解等。


一、MATLAB之数学运算简介

Matlab是一款强大的数学计算工具,支持多种数学运算,包括基础计算、向量和矩阵运算、微积分运算、代数运算、概率和统计运算等等。下面分别进行介绍:

  1. 基础计算:Matlab可以进行基本的加、减、乘、除运算,也可以进行幂运算、取余运算、绝对值运算等。

  2. 向量和矩阵运算:Matlab可以方便地进行向量和矩阵运算,如向量的加、减、乘运算,矩阵的加、减、乘运算,矩阵的转置、求逆、求行列式等等。

  3. 微积分运算:Matlab中可以进行微积分运算,如求导、积分、微分方程求解等。

  4. 代数运算:Matlab可以进行代数运算,如方程求解、多项式求解、线性方程组求解等。

  5. 概率和统计运算:Matlab可以进行概率和统计运算,如随机数生成、概率分布函数的计算、统计分析等。

以上就是Matlab常用的数学运算介绍,不同的运算操作需要使用不同的Matlab函数进行实现。

二、函数介绍

1.三角函数

函数名称

说明

sin()/sind()

正弦函数,输入值为弧度/角度

cos()/cosd()

余弦函数,输入值为弧度/角度

tan()/tand()

正切函数,输入值为弧度/角度

sec()/secd()

正割函数,输入值为弧度/角度

csc()/cscd()

余割函数,输入值为弧度/角度

cot()/cotd()

余切函数,输入值为弧度/角度

asin()/asind()

反正弦函数,返回值为弧度/角度

acos()/acosd()

反余弦函数,返回值为弧度/角度

acsc()/acscd()

反余割函数,返回值为弧度/角度

asec()/asecd()

反正割函数,返回值为弧度/角度

atan()/atand()

反正切函数,返回值为弧度/角度

acot()/acotd()

反余切函数,返回值为弧度/角度

atan2()

四象限内反正切,返回值为弧度/角度

2.双曲线函数

函数名

说明

函数名

说明

sinh()

双曲正弦

asinh()

反双曲正弦

cosh()

双曲余弦

acos()

反双曲余弦

tanh()

双曲正切

atan()

反双曲正切

例:

>> x=-3:0.01:3;

>> plot(x,sinh(x))

>> grid on

 

3.复数函数

函数名

说明

abs()

求复数的模

angle()

求复数的相角(弧度制)

real()

求复数的实部

imag()

求复数的虚部

conj()

求复数的共轭值

unwrap()

复数的相角展开

isreal()

判断是否为实数

cplxpair()

按共轭复数对重新排列

complex()

由实部和虚部创建函数

例:

>> a=3+4i

a =

   3.0000 + 4.0000i


>> A=abs(a)

A =

     5


>> al=real(a)

al =

     3


>> a2=imag(a)

a2 =

     4



>> angle_a=angle(a)


angle_a =


    0.9273


>> b=conj(a)

b =

   3.0000 - 4.0000i

4.求和、乘积和差分

(1)求和函数

一般格式:

sum(x)      %返回数组x的所有值之和,这里x表示一个数组

sum(X)      %返回矩阵X各列元素之和的矩阵

comsum(x)   %返回一个数组x中元素累计和的向量

comsum(X)   %返回矩阵X各列元素之和的矩阵,和sun(X)的结果相同

例.创建一个三维数组B并对其求和及累积和:

>> B(:,:,1)=[1 2 3;2 3 1;3 2 1]


B =

     1     2     3

     2     3     1

     3     2     1


>> B(:,:,2)=[2 4 6;4 6 2;6 4 2]

B(:,:,1) =

     1     2     3

     2     3     1

     3     2     1



B(:,:,2) =

     2     4     6

     4     6     2

     6     4     2



>> Varsum=sum(B)


Varsum(:,:,1) =


     6     7     5




Varsum(:,:,2) =


    12    14    10



>> VarCsum=cumsum(B)


VarCsum(:,:,1) =

     1     2     3

     3     5     4

     6     7     5




VarCsum(:,:,2) =


     2     4     6

     6    10     8

12    14    10

(2)乘积函数

一般格式:

函数名

说明

prod(x)

返回数组x中各元素乘积,x表示数组

prod(A)

返回按列向量的所有元素的积,然后组成一行向量

prod(A,dim)

给出dim维内的元素乘积

cumprod(x)  

返回一个x中各元素累计积的向量,也就是第2个元素是x中前两个元素的累计积

cumprod(A)  

返回一个矩阵,其中列元素是A中列元素的累计积

cumprod(A,dim)  

给出在dim维内的累计积

例.创建三维数组B并对其求积及累计积:

>> B(:,:,1)=[1 2 3;2 3 1;3 2 1]

B(:,:,1) =

     1     2     3

     2     3     1

     3     2     1



B(:,:,2) =

     2     4     6

     4     6     2

     6     4     2


>> B(:,:,2)=[2 4 6;4 6 2;6 4 2]


B(:,:,1) =

     1     2     3

     2     3     1

     3     2     1



B(:,:,2) =

     2     4     6

     4     6     2

     6     4     2



>> Varprod=prod(B)


Varprod(:,:,1) =

     6    12     3




Varprod(:,:,2) =

    48    96    24



>> VarCprod=cumprod(B)

VarCprod(:,:,1) =

     1     2     3

     2     6     3

     6    12     3




VarCprod(:,:,2) =

     2     4     6

     8    24    12

48    96    24

(3)差分函数

调用格式

说明

diff(x)

给出一个长度为n-1的向量,它的元素是长度为n的向量x中相邻元素的差,如果x=(x1,x2,...,xn),则diff(x)=(x2-x1,x3-x2,...,xn-(xn-1))

diff(A)

在A的第一维内计算相邻元素的差分。对于二维矩阵来说,即diff(A)=A(2:m,:)-A(1:m-1,:)

diff(x,k)

求出第k次差分,diff(x,2)和diff(diff(x))等价

diff(A,k,dim)

在dim维内求出第k次差分

例.已知向量x求其差分:

>> x=[1 3 7 12 35 78]


x =

     1     3     7    12    35    78



>> Vard1=diff(x)

Vard1 =

     2     4     5    23    43


>> Vard2=diff(Vard1)

Vard2 =

     2     1    18    20

5.最大值和最小值

函数格式

说明

max(x)

返回x中的最大值;如果x为复数,则返回abs(x)的最大值

max(X)

返回一个矩阵,该矩阵的元素包含矩阵X中第一维元素中的最大值。例如,X是一个二维矩阵,则返回的函数为一个向量,它的第一个元素即X中的第一列的最大值,以此类推。若X为复数,则返回abs(X)的最大值

max(A,B)

返回一个与A,B同维数的矩阵,该矩阵的每个元素均为A,B矩阵相同位置元素的最大值

min(x)

返回x中的最小值;如果x为复数,则返回abs(x)的最小值

min(X)

返回一个矩阵,该矩阵的元素包含矩阵X中第一维元素中的最小值。例如,X是一个二维矩阵,则返回的函数为一个向量,它的第一个元素即X中的第一列的最小值,以此类推。若X为复数,则返回abs(X)的最小值

min(A,B)

返回一个与A,B同维数的矩阵,该矩阵的每个元素均为A,B矩阵相同位置的最小值

例.创建三维数组B,并求其最大值:

>> B(:,:,1)=[1 2 3;2 3 1;3 2 1]


B(:,:,1) =

     1     2     3

     2     3     1

     3     2     1



B(:,:,2) =

     2     4     6

     4     6     2

     6     4     2



>> B(:,:,2)=[2 4 6;4 6 2;6 4 2]



B(:,:,1) =


     1     2     3

     2     3     1

     3     2     1





B(:,:,2) =

     2     4     6

     4     6     2

     6     4     2



>> max(B)

ans(:,:,1) =

     3     3     3


ans(:,:,2) =

     6     6     6


>> whos

  Name          Size             Bytes  Class     Attributes


  A             1x1                  8  double              

  B             3x3x2              144  double              

  VarCprod      3x3x2              144  double              

  VarCsum       3x3x2              144  double              

  Vard1         1x5                 40  double              

  Vard2         1x4                 32  double              

  Varprod       1x3x2               48  double              

  Varsum        1x3x2               48  double              

  a             1x1                 16  double    complex   

  a2            1x1                  8  double              

  al            1x1                  8  double              

  angle_a       1x1                  8  double              

  ans           1x3x2               48  double              

  b             1x1                 16  double    complex   

  x             1x6                 48  double    

6.简单统计命令

函数

说明

mean(x)

求出向量x的算术平均值

mean(A,dim)

给出一个1xnx...xp的矩阵,它包含A中第1维的各个平均值。如果给出了dim,就在dim维内计算

median(x)

求出向量x中元素的中值

median(A,dim)

给出一个1xnx...xp的矩阵,它包含A中第1维各列的中值。如果给出了dim,就在dim维内计算

std(x)

求出向量x中元素的标准差

std(A,dim)

给出一个1xnx...xp的矩阵,它包含A中第1维各列的标准差。如果给出了dim,就在dim维内计算标准差

例.求算术平均值和中值:

>> A=[1.4 9.3 3.5;1.8 9.8 3.2;1.6 10.2 3.9];

>> mean(A)

ans =

    1.6000    9.7667    3.5333

>> mean(A,2)

ans =

    4.7333

    4.9333

    5.2333

>> Varmed=median(A)

Varmed =

    1.6000    9.8000    3.5000

>> Varstd=std(A)

Varstd =

    0.2000    0.4509    0.3512

7.排序

函数

说明

sort(x)

返回一个向量x的元素按递增排序的向量。如果元素是复数,则使用绝对值进行排序,即sort(abs(x))

[y,ind]=sort(x)

返回下标向量ind,即y=x(ind).另外,向量y是x中元素按递增排序得到的

sort(A,dim)

对A中各列按递增排序,注意矩阵的行已被改变。如果给出了dim,则在dim维内进行排序

[B,Ind]=sort(A)

返回矩阵Ind和矩阵B,矩阵B的列为矩阵A中按递增排序的列,矩阵Ind的每列对应于上面提到的向量中列ind

sortrows(X,col)

对矩阵A的各行按递增排序。如果行的元素是复数,它们以abs(x)为主,以angle(x)为辅进行排序,如果给出col,则根据指定的列数对行进行排序

例.对给定矩阵升序降序排序:


>> B=[0 5 5;3 0 3;5 3 0]

B =

     0     5     5

     3     0     3

     5     3     0

>> [Ascend,Ind]=sort(B)

Ascend =

     0     0     0

     3     3     3

     5     5     5

Ind =

     1     2     3

     2     3     2

     3     1     1

>> Var_Descend=flipud(sort(B))      

%把矩阵sort(B)上下翻转,并把翻转后的新矩阵返回Var_Descend

Var_Descend =

     5     5     5

     3     3     3

     0     0     0

8.关系和逻辑运算及多项式运算

(1)关系操作符

关系操作符

功能说明

关系操作符

功能说明

<

小于

>=

大于或者等于

<=

小于等于

==

等于

>

大于

~=

不等于

例:

>> a=magic(3)        %输入一个魔方阵列

a =

     8     1     6

     3     5     7

     4     9     2

>> a>4*ones(3)     %将a与全为4的数组比较

ans =

     1     0     1

     0     1     1

     0     1     0

(2)逻辑操作符

逻辑操作符

说明

&

&&

只是用于标量,表示“与”

|

||

只是用于标量,表示“或”

~

xor

异或

例:

>> a=[1,2,-3,0,0];

>> b=[0,1,0,2,0];

>> a&b

ans =

     0     1     0     0     0

>> a|b

ans =

     1     1     1     1     0

>> -a

ans =

    -1    -2     3     0     0

>> xor(a,b)

ans =

     1     0     1     1     0

(3)关系与逻辑函数

函数名称

功能介绍

xor(x)

异或运算

any(x)

如果向量x中有非0元素则返回1,否则返回0

all(x)

如果向量x中所有元素非0则返回1,否则返回0

isequal(x,y)

x和y对于元素相等时置1,否则置0

ismember(x,y)

若x元素是y是子集,相应x元素置1,否则置0

例:

>> a=[1,2,-3,0,0];

>> b=[0,1,0,2,0];

>> any(a)

ans =

     1

>> all(a)

ans =

     0

>> isequal(a,b)

ans =

     0

(4)多项式运算

函数名称

功能介绍

polyval(p,x)

计算多项式p,如果x是一个标量,则计算出多项式在x点的值;如果x是一个向量或者一个矩阵,则计算出多项式在x中所有元素上的值

[y,err]=polyval(p,x,E)

计算向量x的多项式p的值。同上,计算结果在y中,同时还根据polyfit命令给出的矩阵E返回一个误差估计向量err

polyvalm(p,A)

直接对矩阵A进行多项式计算。不是像上个命令一样对每个元素进行多项式计算,而是计算p(A)=P1An+p2An+...

poly(A)

计算矩阵A的特征多项式向量

poly(x)

给出一个长度为n+1的向量,其中的元素是次数为n的多项式的系数。这个多项式的根是长度为n的向量x中的元素

compan(p)

计算带有系数p的多项式的友矩阵A,这个矩阵的特征多项式为p

roots(p)

计算特征多项式p的根,是一个长度为n的向量,也就是方程p(x)=0的解。表达式poly(roots(p))=p为真,结果可以是复数

conv(p,q)

计算多项式p和q的乘积,也可以认为是p和q的卷积

[k,r]=deconv(p,q)

计算多项式p除q。k是商多项式,r是残多项式。这个计算等价于p和q的逆卷积

例:给定两个多项式。试进行以下计算:

(1)计算多项式在x=1处的值。

(2)两个多项式相乘,得到一个新的多项式。

(3)求多项式的根。

解:

>> p2=[2 3 -5];

>> p3=[3 0 0 -4];

>> var_valuel=polyval(p2,1)

var_valuel =

     0

>> var_value2=polyval(p3,1)

var_value2 =

    -1

>> p5=conv(p2,p3)

p5 =

     6     9   -15    -8   -12    20

>> roots2=roots(p2)

roots2 =

   -2.5000

    1.0000

>> roots3=roots(p3)

roots3 =

  -0.5503 + 0.9532i

  -0.5503 - 0.9532i

   1.1006   

三、如何进行矩阵的转置、求逆、行列式等运算?

MATLAB可以使用多种函数来进行矩阵的转置、求逆和行列式等运算,以下是一些常用的示例:

1.矩阵转置:使用' '或者.'操作符

例如,对于一个3x2的矩阵A,可以使用以下方式进行转置:

A = [1 2; 3 4; 5 6];
B = A';  % 使用'操作符
C = A.'; % 使用.'操作符

2.矩阵的逆:使用inv()函数

例如,对于一个3x3的矩阵A,可以使用以下方式求逆:

A = [1 2 3; 4 5 6; 7 8 9];
B = inv(A);

如果矩阵A没有逆,MATLAB会返回一个警告或错误信息。在求逆之前应该检查矩阵是否可逆。

3.矩阵的行列式:使用det()函数

例如,对于一个3x3的矩阵A,可以使用以下方式求行列式:

A = [1 2 3; 4 5 6; 7 8 9];
B = det(A);

行列式的值是一个标量。

除此之外,还有其他一些函数可以进行矩阵运算,如矩阵乘法('*'操作符或者mtimes()函数)、矩阵分解(如LU分解、QR分解等)和特征值分解(eig()函数)等。使用不同的函数根据实际需要进行矩阵运算即可。

四、如何进行常见的三角函数、指数函数、对数函数等数学函数的计算?

MATLAB中有很多内置函数可以进行常见的数学函数计算,以下是常用的数学函数及其在MATLAB中的函数名:

  1. 三角函数:sin(x), cos(x), tan(x), asin(x), acos(x), atan(x)
  2. 指数函数:exp(x)
  3. 对数函数:log(x), log10(x), log2(x)
  4. 幂函数:power(x,y), x^y

以上函数中,x和y一般为数字或向量,表示对这些数字或向量进行对应的数学运算。

另外,MATLAB还提供了符号计算工具箱(Symbolic Math Toolbox),可以对符号表达式进行计算,包括符号三角函数、符号指数函数、符号对数函数等。可以使用syms命令定义符号变量,使用相应的符号函数进行计算。例如:

syms x
sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
exp(x)
log(x)
log10(x)
log2(x)

如果需要进行高级的数学计算(如微积分、矩阵计算、傅里叶变换等),可以使用MATLAB中的相应工具箱(如Symbolic Math Toolbox、Optimization Toolbox、Signal Processing Toolbox等)。

五、如何进行多项式的求解和拟合?

MATLAB提供了多种方法来进行多项式的求解和拟合。以下是其中常用的几种方法:

1.使用polyfit函数进行多项式拟合。

该函数可以根据给定的数据点,使用最小二乘法拟合出一个n次多项式,并返回多项式系数。例如,要拟合一个2次多项式,可以使用以下代码:

% 定义x和y为数据点
x = [1, 2, 3, 4, 5];
y = [0, 2, 3, 4, 5];

% 进行2次多项式拟合
p = polyfit(x, y, 2);

% 输出多项式系数
disp(p);

2.使用polyval函数求解多项式函数值。

polyval函数可以根据给定的多项式系数和自变量,求解多项式函数值。例如,要求解上面拟合的2次多项式在x=6处的函数值,可以使用以下代码:

% 求解2次多项式在x=6处的函数值
y = polyval(p, 6);

% 输出函数值
disp(y);

3.使用roots函数求解多项式的根。

roots函数可以根据多项式系数,求解出多项式的根。例如,要求解2次多项式的根,可以使用以下代码:

% 定义2次多项式的系数
a = [1, -3, 2];

% 求解多项式的根
r = roots(a);

% 输出根
disp(r);

以上这些方法可以满足大部分多项式求解和拟合的需求。如果需要更高级的功能,可以参考MATLAB文档中的其他函数和工具箱。

六、如何进行数值积分和微分?

MATLAB中有许多函数可以用于数值积分和微分。下面简单介绍其中几个常用的函数:

  • 数值积分:
  1. quad函数:可以用于一维数值积分。例如:

    f = @(x) x^2 + 2*x + 1;
    a = 0;
    b = 1;
    Q = quad(f,a,b)   % Q为积分结果
    

  2. dblquad函数:可以用于二维数值积分。例如:

    f = @(x,y) x.^2 + y.^2;
    x1 = 0;
    x2 = 1;
    y1 = 0;
    y2 = 1;
    Q = dblquad(f,x1,x2,y1,y2)  % Q为积分结果
    

  • 数值微分:
  1. diff函数:可以用于求函数的一阶或二阶导数。例如:

    x = linspace(0,1,100);
    y = exp(x);
    dydx = diff(y)./diff(x);   % 求y的一阶导数
    d2ydx2 = diff(y,2)./diff(x(1:end-1));   % 求y的二阶导数
    plot(x,y,x(1:end-1),dydx,x(1:end-2),d2ydx2)
    legend('y','y''','y''''')
    

  2. gradient函数:可以用于求函数在网格上的梯度。例如:

    [x,y] = meshgrid(-2:0.1:2,-2:0.1:2);
    f = x.^2 + y.^2;
    [Gx,Gy] = gradient(f,0.1,0.1);   % 求f在0.1间隔网格上的梯度
    quiver(x,y,-Gx,-Gy)   % 绘制矢量场图
    

以上仅是示例,实际情况中还有很多其他函数可以用于数值积分和微分。需要根据具体问题进行选择。

七、如何进行常微分方程(ODE)和偏微分方程(PDE)的求解?

MATLAB中提供了多种用于求解常微分方程(ODE)和偏微分方程(PDE)的函数和工具箱,下面分别做简介。

求解常微分方程(ODE)

1.ode45函数

ode45函数是MATLAB中最常用的求解常微分方程的函数,它使用龙格-库塔(RK)法求解初值问题(IVP),可以处理非刚性问题和刚性问题。语法为:

[t,y] = ode45(odefun,tspan,y0,options)

其中,odefun为求解的ODE方程,tspan为求解区间,y0为初始值,options为可选参数,用于调整求解参数。

2.ode23函数

ode23函数和ode45函数类似,也是用于求解ODE问题的。不同之处在于它使用较简单的RK法,适用于求解非刚性问题。语法为:

[t,y] = ode23(odefun,tspan,y0,options)

3.ode113函数

ode113函数也是用于求解ODE问题的函数,它使用自适应的Adams方法和龙格-库塔法,适用于求解高精度的非刚性问题。语法为:

[t,y] = ode113(odefun,tspan,y0,options)

求解偏微分方程(PDE)

MATLAB中提供了两种工具箱用于求解偏微分方程:PDE工具箱和偏微分方程工具箱。

1.利用PDE工具箱求解PDE问题

PDE工具箱是MATLAB中常用的工具箱之一,它能够处理二维和三维的偏微分方程问题。使用PDE工具箱可以进行网格划分、求解和可视化等操作。可以通过PDE工具箱中的“偏微分方程器”来进行求解。使用方法如下:

  • 打开MATLAB并创建一个新的PDE应用程序

  • 选择“偏微分方程器”工具

  • 输入PDE问题的系数、边界条件、初始条件、求解区域和网格划分等信息

  • 进行求解,并用可视化工具查看结果

2.利用偏微分方程工具箱求解PDE问题

偏微分方程工具箱是MATLAB中的另一种工具箱,用于求解二维和三维的偏微分方程问题。可以通过偏微分方程工具箱中的各种函数来进行求解。常用的函数包括pdepe、pdetool、pde23s、pde23t和pde45等。使用方法如下:

  • 输入PDE问题的系数、边界条件、初始条件、求解区域和网格划分等信息

  • 调用相应的函数进行求解

  • 可以进行结果可视化、后处理等操作

以上是MATLAB中求解常微分方程和偏微分方程的基本方法,需要注意的是,在使用相应的函数时,需要根据具体情况选择合适的函数,并进行参数设置和结果处理。

八、如何使用MATLAB的符号计算工具箱进行符号计算?

MATLAB的符号计算工具箱可以帮助实现符号计算。具体步骤如下:

1.打开MATLAB,并在命令窗口输入sym命令,创建符号计算变量:

>> syms x y

2.输入需要计算的表达式。例如,要计算x+y的和与积,可以输入以下命令。

>> z = x + y
>> w = x * y

3.对符号计算变量进行操作。例如,可以计算表达式的导数、积分、简化等。

>> diff(z)
>> diff(w, x)
>> int(z)
>> simplify(z + z)

4.MATLAB还提供了一些特定的符号计算函数,如求解方程、矩阵运算、微分方程求解等。

>> solve(x^2 + y^2 == 1, x)
>> A = sym('1 2;3 4')
>> det(A)
>> dsolve('Dy = y', 'y(0) = 1')

以上为基本的使用方法,符号计算工具箱还有许多高级功能,如多项式运算、计算机代数、符号计算设置、符号函数等,需要进一步的学习和掌握。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的雷神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值