目录
今天所讨论的主题,虽然标题上提及了ollama,但实际上,我们的焦点已经悄然转移到了AI训练这一更为宽泛且深入的领域。特别是关于如何让AI高效且准确地识别并理解历史代码的场景,这一议题不仅关乎技术的前沿探索,也直接关系到软件开发与维护的效率提升。经过连日来的思考与实践,整理出了一些宝贵的经验与见解,希望能为未来的工作提供一份有价值的参考。
知识库容量:平衡
在构建AI辅助代码理解系统的过程中,知识库的容量管理是一个不可忽视的环节。一个庞大的知识库固然能够包含更多的历史代码信息,但随之而来的,是对计算资源的巨大需求。特别是对于资源有限、仅依赖CPU的环境而言,知识库中的文件数量应当审慎控制。基于我的实践经验,建议将文件数量保持在2000个以下,这一界限能在大多数情况下保证良好的召回率与性能表现。当然,这并非一成不变的规则,实际应用中还需根据具体的硬件条件、AI模型的复杂度以及预期的处理速度进行灵活调整。定期的知识库测试与性能评估,是确保这一平衡得以维持的关键。
元数据:精准定位
元数据,作为连接知识与应用的桥梁,其重要性不言而喻。在AI处理代码的场景中,准确标注文件的类型、编程语言、功能模块等信息,能够极大地提升模型检索的效率与准确性。
遗憾的是,当前我们使用的dify平台尚不支持非文本文件的直接处理,这意味着即便是代码文件,也需要通过重命名