【开发心得】Dify部署ollama模型的坑[4]

目录

三种模型的优点对比

三种模型的缺点对比 

三种模型的适用场景

小结


正好要写一篇关于大模型对比的总结,恰逢年度评选也要写一篇,就合二为一了。

由于没有看到题目的要求,所以还是沿用原来的题目,已经写到第4篇了。自从Dify部署了大模型以后,的确是小坑不断,也只能继续学习和总结。要彻底搞清楚这些大模型的原理,并不是很容易。尤其是作为以应用层作为重点的我们,更关注那些大模型更加适合我们。

俗话说,不怕不识货,就怕货比货。就像买大白菜一样,那三个对比一下,就知道该买那个了。

下面就以我们用过的Llama3、Qwen2.5和DeepSeek三个模型,总结一下三类模型的优劣势对比和适用场景。

三种模型的优点对比

Llama3 Qwen2.5 DeepSeek
  1. 性能:目前最强的70B模型。
  2. 长文本处理能力:支持高达8000个token的上下文长度,使得在处理大规模数据时更具优势。
  3. 高效推理
### Dify平台部署Ollama模型教程 #### 本地部署Dify应用开发平台 为了成功部署Ollama模型Dify平台,需先完成Dify的本地环境搭建。这一步骤涉及安装必要的依赖项以及配置运行所需的各项参数设置[^1]。 ```bash # 安装Dify所需组件 sudo apt-get update && sudo apt-get install -y \ curl \ git \ python3-pip \ build-essential \ libssl-dev \ libffi-dev \ python3-dev ``` #### 使用Ollama部署本地模型 接着,在本地环境中准备用于训练或推理的大规模语言模型实例——即Ollama模型文件及其配套资源包。确保这些资料放置于指定路径下以便后续集成操作能够顺利执行。 #### 在Dify中接入Ollama大语言模型 通过特定接口将前述准备好的Ollama模型引入到已构建完毕的应用框架内。此过程可能涉及到API调用、数据传输协议设定等一系列技术细节处理工作。 当遇到`max retries exceeded with url`错误提示时,表明网络请求尝试次数超限未能获取预期响应。此时应核查目标服务器状态是否正常运作,并确认所提供的URL链接无误;另外还需关注防火墙策略等因素对通信造成的影响[^2]。 对于上述提及的服务端程序调整命令如下所示: ```bash # 更新服务配置并重新启动Ollama服务 sudo systemctl daemon-reload sudo systemctl restart ollama ``` #### 公网远程使用Dify 最后一步则是使整个应用程序支持来自外部互联网用户的访问需求。创建一个可被公网识别的有效入口地址,并采取措施保障该连接的安全性和稳定性。例如利用反向代理机制来隐藏实际物理位置信息的同时提供负载均衡功能等优化手段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

战斗模式

如果有帮助,就来一杯咖啡吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值