
Tin Marković, Booking BE Team Lead

Refactoring in Python

Patterns & Approach



2

Introduction
 What is refactoring?
 What’s the point?
 How to do it well?
 Why not throw away everything?



3

Speaker
 Tin

 Team Leader at Kiwi.com

 Software Architecture as passion

 Experiences working with edX and other big projects

 What can I share? What have I seen?



4

Abstract
 Read from old code, see the secrets it hides
 Chesterton’s Fence
 Incremental changes
 Modernize, don't reinvent
 Bubble of testability



5

Overview
 General topic, specific examples

 Easy Wins
 Patterns and Antipatterns
 Philosophy



6

Easy Wins: Intro
 Easy wins are easy

 Plugins
 Libraries
 Utilities

 Dances around the root cause



7

Automated code quality
 Tools are cool
 One decision, vast time saved
 Examples:

 Pylint
 MyPy
 Black
 Coala



8

Tools: PyLint and MyPy
 Pylint "lints" code according to rules
 Established industry practice
 Bare minimum, often not automated
 MyPy checks if annotations follow typing
 Opt-in on a per-function basis
 Easy to implement slowly



9

Tools: Black
 Black keeps code style consistent
 Super simple to run and keep running
 No arguments about unimportant things
 Keeps the same interpreter output



10

Tools: Coala
 More advanced tools
 Very modular, a framework for other tools
 Easy complexity checks
 Can auto-fix code locally



11

Example before/after tooling



12

Easy Wins: Conclusions
 Tools make a lot of discussion not necessary
 This is a great win:

 More thinking about problems
 Less thinking about linebreaks

 Easy bump in code quality
 Just a bump, doesn't solve core issues



13

Patterns and Antipatterns: 
Introduction

 Code hard to use
 Suprising facts
 Principle of Least Astonishment
 Legacy is often astonishing
 "Historical Reasons"



14

Code Smells
 Smells of:

 Neglect
 Inconsistency
 Redundancy

 Because of:
 Deadlines
 Cost-cutting
 Prototyping
 Top Prio Requests



15

Levels of Code Smell
 Easy smells:

 Couple of lines of code, scope nonexistent
 Medium smells:

 Architecture mistakes
 Larger scope and respawning

 Hard smells:
 Easy to notice, impossible to remove
 "Lets rewrite everything!"



16

Examples of Code Smell
 Easy

 Hard: Implement ORM

 Medium



17

Tools: SonarQube
 Static analysis of code
 Analyses:

 bugs
 code smells
 known security oversights
 test coverage and complexity
 comments and docs



18

Example: SonarQube output



19

Example: SonarQube output



20

Antipatterns to recognize
 Antipatterns mostly unique to codebase
 Lack of strong architectural direction
 Organic code growth
 Copy paste coding



21

Magical methods
 Lacking explicit input and output
 Usually an implemented side effect
 Replaced by better object oriented approach



22

Overly important decorators
 Should not modify function signature
 Should be explicit
 Should not replace method calls



23

Patterns to implement
 Old code needs separation
 New code needs to flourish
 Separation patterns:

 Interface
 Facade (and inverted)



24

Interface
 Find common usages of code pattern
 Try to find base use-case
 Create interface
 Add edge-cases through implementations



25

Facade
 Cleaner code can't be a one-time thing
 Wrap your code in a facade fitting old code
 Keep required side-effects there, but obvious
 Manage required functionality in one place



26

Inverted Facade
 Keep old code abstracted behind a facade
 Use an interface that you would expect
 Implementation is hacky, but you start:

 implementing a contract
 standardizing access
 showing the ideal state



27

Patterns and Antipatterns: 
Conclusions

 Code is almost never pretty after growth
 We can't throw everything away
 We can improve gradually
 Bubble of clean code



28

Philosophy: Introduction
 Theory is good, implementation better
 Rules need to be established
 If it isn't enforced, it doesn't exist
 Cost benefit analysis is for everyone



29

Approaching problem slowly
 Rapid changes do not help stability
 It worked so far, keep it working
 Incremental steps, with time to adapt



30

Code Review Rules
 Enforce code review
 Require tools to pass, add CI if possible
 Split responsibility 1:3
 Reduce bus factor



31

Code Review Best Practices
 Blameless
 Impersonal
 Triple tier system

 Overall scope
 System scope
 Code scope



32

Education is most influential
 Make sure devs understand the why
 Document everything, incrementally
 Enforce better documentation 
before and after change

 Explain architecture and direction



33

There is no Easy Victory
 Easy wins are a step
 Quality increases slowly
 Tools don't replace engineering



34

Code is written to be 
replaced

 Best code can be rewritten easily
 Less interdependent, better
 Allow easy reuse, allow easy replacement



35

How does Code Debt hurt
 Code debt is real debt
 Eventually, things will crash down
 Mistakes happen more often
 Implementation is slower



36

How to counteract 
management

 Management usually needs convincing
 Examples of mistakes that caused losses
 Blame code debt, not developers
 Assert no false flags, keep credibility



37

Philosophy: Conclusions
 Low quality code is often a symptom
 Go for the cause, step by step
 Consistency is more important than bursts
 No easy victory



38

Conclusions
 Old code tells a story
 The story needs to modernize, not disappear
 Grab the easy boosts
 Rewrite current failures in bubbles
 Mantain quality going forward



ANY QUESTIONS?
You can find me at tin.markovic@kiwi.com

Or at https://www.linkedin.com/in/tin-markovic

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

