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Motivation

➔ Distributed systems are widely 
deployed

➔ Despite this fact, writing correct 
distributed systems is hard
◆ Asynchronous network
◆ Crashes
◆ Network delays, partial failures...

➔ Systems deployed in production 
often have bugs
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Bugs in Distributed Systems

Service Outage

Data loss

Degraded Performance
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Protocol Descriptions Are Not Enough

➔ Distributed protocols typically have edge cases
◆ Many of which may lack a precise definition of expected behavior

➔ Difficult to correspond final implementation with high-level 
protocol description, making protocol changes harder

➔ Production implementations resort to ad-hoc error 
handling [PODC’07, OSDI’14, SoCC’16, SOSP’19]
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One key problem for distributed systems
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Related Work

➔ Using proof assistants to prove system properties
◆ Verdi [PLDI’15], IronFleet [SOSP’15]
◆ Require a lot of developer effort and expertise

➔ Model checking implementations
◆ FlyMC [EuroSys’19], CMC [OSDI’02], MaceMC [NSDI’07], MODIST 

[NSDI’09]
◆ State-space explosion: many states irrelevant to high-level properties

➔ Systematic testing, tracing, and debugging
◆ P# [FAST’16], D3S [NSDI’08], Friday [NSDI’07], Dapper [TR’10]
◆ Incomplete; requires runtime detection or extensive test harness
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Model Checking

➔ Verifies a model with respect to a correctness 
specification

➔ Specification can define safety and liveness requirements
➔ Produces a counterexample when a property is violated

Model

Specification

Model
Checker

✔
+

trace
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Model Checking a Bank Transfer
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Initial state: both 
accounts have positive 
balance

Transfer Amount 
between accounts

Property: transfer 
should preserve positive 
balances



Visualizing an Error Trace
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Error: our model does not check if Alice has sufficient funds!



Overview of PGo and Modular PlusCal
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PGo compiler toolchain

➔ PGo is a compiler from models in PlusCal/Modular PlusCal 
to implementations in Go

➔ Capable of generating concurrent and distributed systems 
from PlusCal specifications
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PGo workflow
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PGo trade-offs

➔ Advantages
◆ Compatible with existing PlusCal/TLA+/TLC eco-system
◆ Mechanize the implementation = less dev work
◆ Maintain one definitive version of the system

➔ Limitations
◆ No free lunch: concrete details have to be provided somehow

● Environment is abstract: developer must edit generated source 
● Bugs can be introduced in this process

◆ Software evolution: unclear how to reapply the changes to model?
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In today’s talk

➔ Focus on explaining ModularPlusCal (MPCal)
➔ Examples and demo
➔ Omit PGo compiler details:
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How would you naively implement PlusCal code?
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variables network = <<>>;
...
readMessage: \* blocking read from the network
    await Len(network[self]) > 0;
    msg := Head(network[self]);
    network := [network EXCEPT ![self] = Tail(network[self])];

readMessage: // blocking read from the network
env.Lock(“network”)
network := env.Get(“network”)
if !(Len(network.Get(self)) > 0) {
  env.Unlock(“network”)
  goto readMessage
}
msg = Head(network.Get(self))
env.Set(“network”, network.Update(self, Tail(network.Get(self))))
env.Unlock(“network”)

We model a 
network read, but 
this implementation 
does not do that

Almost all this code 
is for the model 
checker

This algorithm is not 
abstract enough

Not a 
blocking 
network 
read

PlusCal

Go



Use macros?
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variables network = <<>>;
...
readMessage:
    NetworkRead(msg, self);

Network semantics 
become a one-linerAll processes will share the 

same view of and access to 
the environment

Semantics still rely 
on global variables

The macro body could 
be replaced by a 
real-world 
implementation

readMessage:
msg := ReadNetwork(self) Assumes one 

canonical network Go

PlusCal



Invent a new kind of macro: archetype
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archetype AServer(ref network, ...)
...
readMessage:
    msg := network[self];

Complex network 
semantics can become a 
variable read or write

Processes are 
parameterised by an 
abstraction over the 
environment

Any number of model checker and 
implementation behaviors can be defined 
elsewhere, since the environment is abstract

readMessage:
msg := network.Read(self)

MPCal



Modular PlusCal: System vs Environment

➔ Goal: isolate system definition from abstractions of its 
execution environment

➔ Semantics of new primitives:
◆ Archetypes can only interact with arguments passed to them
◆ Archetype arguments encapsulate their environment and are called 

resources
◆ Each resource can be mapped to an abstraction for model checking when 

archetypes are instantiated
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The Modular PlusCal Language
◆ Archetypes: define API to be used to interact with the concrete system
◆ Mapping Macros: allow definition of abstractions
◆ Instances: Configures abstract environment for model checking
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mapping macro TCPChannel{
  read {
    await Len($variable) > 0;
    with (msg = Head($variable)) {
      $variable := Tail($variable);
      yield msg;
    };
  }
  write {
    await Len($variable) < BUFFER_SIZE;
    yield Append($variable, $value);
  }
} MPCal

archetype AServer(ref network, ...)
...
readMessage:
    msg := network[self];

MPCal

variables network = <<>>;

process (Server = 0) ==
  instance AServer(ref network, ...)
    mapping network[_] via TCPChannel

MPCal

MPCal



Web server example
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AServer

[
  client_id -> \* return address
  path -> \* resource requested
]

to: client_id

"data..."

filesystem

network



variables network = <<>>;

process (Server = 0)
variable msg;
{
  readMessage:
    await Len(network[self]) > 0;
    msg := Head(network[self]);
    network := [network EXCEPT ![self] = Tail(network[self])];

  sendPage:
    await Len(network[msg.client_id]) < BUFFER_SIZE;
    network := [network EXCEPT ![msg.client_id] = Append(network[msg.client_id], WEB_PAGE)];
    goto readMessage;
} PlusCal

Abstract Server with Buffered Network (PlusCal)
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Abstract environment: 
network as sequences

Abstractly represents 
reading a message from 
the network

Model checking 
concern: only send 
messages if the buffer 
has space

Model website data as a 
constant called 
WEB_PAGE



archetype AServer(ref network, file_system)
variable msg;
{
  readMessage:
    msg := network[self];

  sendPage:
    network[msg.client_id] := file_system[msg.path];
    goto readMessage;
}

Abstract Server with Buffered Network (MPCal)
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Archetype has access 
to: a network, a 
filesystem

Interacting with the 
network becomes 
straightforward

Reading from the 
filesystem becomes clear, 
unlike just passing around 
a WEB_PAGE placeholder

MPCal



mapping macro TCPChannel{
  read {
    await Len($variable) > 0;
    with (msg = Head($variable)) {
      $variable := Tail($variable);
      yield msg;
    };
  }
  write {
    await Len($variable) < BUFFER_SIZE;
    yield Append($variable, $value);
  }
}

Environment Abstractions: Buffered Network
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MPCal

Abstract blocking 
network read 
semantics

Abstract buffered 
network write 
semantics

What happens 
when a variable is 
read, transform the 
underlying value 
$variable and 
yield the result.

What happens 
when a variable is 
written, apply the 
new $value to 
the underlying 
$variable and 
yield the new 
underlying value.



mapping macro WebPages {
  read {
    yield WEB_PAGE;
  }
  write {
    assert(FALSE);
    yield $value;
  }
}

Environment Abstractions: Filesystem Read
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MPCal

Reading modeled 
lossily by returning a 
constant

Writing not modeled, 
so represented by 
failure



variables network = <<>>;

process (Server = 0) == instance AServer(ref network, filesystem)
    mapping network[_] via TCPChannel
    mapping filesystem[_] via WebPages;

Putting it All Together: Instances
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MPCal

Same model checking 
abstractions

Function-mapping 
syntax

mapping pipe via ... ;

Mappings without the [_] also exist:

Server is an instance 
of AServer, with all the 
mapping macros and 
parameters expanded



Reviewing Source Languages
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PlusCal Modular PlusCal

Abstract environment; require 
manual edits in the generated 
implementation that can 
introduce bugs

Abstractions are isolated: not 
included in archetypes. Behavior 
can be preserved if abstractions 
have implementations with 
matching semantics

Protocol updates are difficult; 
developer needs to reapply 
manual changes

Protocol updates can be applied 
any time; generated code is 
isolated from execution 
environment



PGo Workflow

2. PGo compiles 
model to PlusCal

3. User defines 
correctness 
properties

4. TLC validates 
or produces 
counterexample

1. User writes 
system model in 
MPCal

5. PGo compiles 
model to Go 6. User choses 

concrete 
implementation 
for abstractions

7. User writes 
main function 
(bootstrap)

8. System is 
deployed in a 
distributed 
environment

28



PGo Workflow
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Compiling Modular PlusCal to Go
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Defining our Objective

➔ Goal: every execution of the resulting system can be 
mapped to an accepted behavior of the spec
◆ Refinement

➔ Environment modeled abstractly in Modular PlusCal needs 
an implementation in Go with matching semantics

➔ We need to understand how TLC explores behaviors 
defined by a model

31



Coming Back to the Server Example
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archetype AServer(ref network, file_system)
variable msg;
{
  readMessage:
    msg := network[self];

  sendPage:
    network[msg.client_id] :=
                     file_system[msg.path];
    goto readMessage;
}

MPCal

archetype ALoadBalancer(ref network)
variables msg, next = 0;
{
  rcvMsg:
    msg := network[LoadBalancerId];
    assert(msg.message_type = GET_PAGE);

  sendServer:
    next := (next % NUM_SERVERS) + 1;
    mailboxes[next] := [
      message_id |-> next,
      client_id |-> msg.client_id,
      path |-> msg.path
    ];
    goto rcvMsg;
} MPCal



Behaviors in a Model
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variables network = <<>>;

process (Server = 0) == instance AServer(ref network, filesystem)
    mapping network[_] via TCPChannel
    mapping filesystem[_] via WebPages;

process (LoadBalancer = 1) == instance ALoadBalancer(ref network)
    mapping network[_] via TCPChannel;

TLC explores all possible interleavings between two processes (instances)

MPCal



Interleavings between Processes
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archetype ALoadBalancer(ref network)
variables msg, next = 0;
{
  rcvMsg:
    msg := network[LoadBalancerId];
    assert(msg.message_type = GET_PAGE);

  sendServer:
    next := (next % NUM_SERVERS) + 1;
    mailboxes[next] := [
      message_id |-> next,
      client_id |-> msg.client_id,
      path |-> msg.path
    ];
    goto rcvMsg;
} MPCal

archetype AServer(ref network,
                  file_system)
variable msg;
{
  readMessage:
    msg := network[self];

  sendPage:
    network[msg.client_id] :=
             file_system[msg.path];
    goto readMessage;
}

MPCal

Labels define atomic steps in the model (or actions)

Possible behaviors

rcvMsg
sendServer
readMessage
sendPage

readMessage
sendPage
rcvMsg
sendServer

rcvMsg
readMessage
sendServer
sendPage

✔

Impossible behavior

sendServer
rcvMsg
readMessage
sendPage



Preserving Modular PlusCal Semantics in Go

➔ Trivial solution: runtime scheduler that chooses which step 
to run next
◆ Prohibitively expensive, especially in a distributed system context

➔ Goal: achieve as much concurrency as possible across 
archetypes without changing behavior:
◆ Exploit the fact that archetypes can only perform externally visible 

operations by interacting with its resources (parameters)
◆ Achieve concurrency while preserving atomicity when it matters
◆ Devise an algorithm to safely execute the statements in a step
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Reasoning about Concurrency (part 1)
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archetype AServer(ref network,
                  file_system)
variable msg;
{
  start:
    print “Waiting for message”;

  readMessage:
    msg := network[self];

  sendPage:
    network[msg.client_id] :=
       file_system[msg.path];
    goto readMessage;
} MPCal

➔ Steps that do not use any 
resource are safe to be 
executed concurrently 
with other steps
◆ Their effects are “invisible”
◆ Equivalent to some 

sequential execution 
explored by TLC



Reasoning about Concurrency (part 2)
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➔ Steps that use the the 
same resource 
(environment) may not be 
safe to  run concurrently
◆ Let implementation dictate 

safety of concurrent execution
◆ If exclusive access is needed 

(such as in our log), locks can be 
used

archetype ALoadBalancer(ref network)
variables msg, next = 0;
{
  rcvMsg:
    msg := network[LoadBalancerId];
    assert(msg.message_type = GET_PAGE);

  sendServer:
    next := (next % NUM_SERVERS) + 1;
    network[next] := [
      message_id |-> next,
      client_id |-> msg.client_id,
      path |-> msg.path
    ];
    goto rcvMsg;
} MPCal

archetype AServer(ref network,
                  file_system)
variable msg;
{
  start:
    print “Waiting for message”;
  readMessage:
    msg := network[self];
  sendPage:
    network[msg.client_id] := file_system[msg.path];
    goto readMessage;
} MPCal



Executing an Atomic Step in Go

➔ We generate a  Go function for each archetype 
instantiated in the model
◆ Steps in an archetype may be executed concurrently with steps from 

other archetypes

➔ Overview of the execution model of a single step:
◆ Acquire all resources used in the step
◆ Execute all statements in order
◆ Release all resources at the end

➔ Is this always safe?

38



Deadlocks!

➔ Steps s1 and s2 interact 
with resources r1 and r2, 
but in different orders

➔ Suppose also that they 
both require exclusive 
access

➔ Deadlock becomes 
possible

39

s1:
  if (r1 > 0) {
      r2 := 0;
  } MPCal

s2:
  if (r2 > 0) {
      r1 := 0;
  } MPCal

s1 acquires r1 s2 acquires r2

s1 acquires r2 s2 acquires r1

Deadlock



Updating our Execution Model

➔ Resources are acquired in 
consistent order
◆ Either <r1, r2> or <r2, r1>, 

always
➔ Updated execution model:

◆ Acquire all resources used in the 
step, in consistent order

◆ Execute all statements in order
◆ Release all resources at the end

40

s1:
  if (r1 > 0) {
      r2 := 0;
  } MPCal

s2:
  if (r2 > 0) {
      r1 := 0;
  } MPCal



Reasoning about the Execution Model

➔ We offer a reduction argument about the safety of the 
execution model

➔ Take any two labels. There are three cases to consider:
◆ One of the labels does not use any resource: equivalent to sequential 

execution
◆ Labels use disjoint sets of resources: equivalent to sequential execution 

(steps interact with different parts of the environment)
◆ Labels use overlapping sets of resources: if resources require exclusive 

access, they should implement that behavior when being acquired. 

41



Resources Mapped as Functions

➔ Resources can be mapped as functions
➔ Entire function applications is seen as the resource
➔ Challenge: statically analysing MPCal model is no longer 

sufficient to determine resources used in a step

42

process (Server = 0) == instance AServer(ref network,
                                         filesystem)
    mapping filesystem[_] via WebPages MPCal

sendPage:
  network[msg.client_id] :=
      file_system[msg.path];
  goto readMessage;MPCal

MPCal



Solution

➔ Resources mapped as functions are acquired in the 
statement they are used

➔ Drawback: they cannot be acquired in consistent order
➔ Instead, we allow actions to be restarted during a potential 

deadlock

43



Executing a Modular PlusCal step (action) in Go

44

Main loop: only exit 
when the step is 
complete

Resources not 
mapped as functions 
acquired in consistent 
order as described

Execute the 
statements defined in 
the model Resource mapped as 

function is used in a 
statement

If it cannot be acquired 
(potential deadlock), 
restart from scratch

When all statements are 
executed, make environment 
changes externally visible



Linking Abstractions and Concrete Implementations

➔ PGo is not aware of the concrete representation of 
abstract resources passed to archetypes

➔ Instead, we define a contract that valid implementations 
must follow
◆ If implementation matches abstraction, code generated by PGo does not 

need to be manually edited
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Environment Implementations: Requirements

➔ What is needed from these implementations?
◆ A way to “acquire” them before use (enforcing exclusive access if 

necessary)
◆ Interacting with the environment (reading, writing)
◆ Making environment changes visible at the end of the atomic step
◆ Aborting local interaction if step needs to be restarted

46



Archetype Resources API (in Go)
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type ArchetypeResource interface {
    Acquire(ResourceAccess) error
    Read() (interface{}, error)
    Write(interface{}) error
    Release() error
    Abort() error
    Less(ArchetypeResource) error
} Go

Called before the 
resource is read or 
written

Only call that can make 
externally visible 
effects

Discards interactions 
when actions need to 
be restarted

Allow resources to be 
comparable (enforcing 
consistent order)



Handling Errors

➔ API functions implemented by resources may return errors
➔ Errors are used for two purposes during execution:

◆ To flag unrecoverable environment errors
◆ To request that an action be restarted (e.g., potential deadlock)

48

Environment Errors Restart Request

I/O error reading or writing to a 
file or socket; network operation 
timeout

Attempt to read a socket when no 
message is available; attempting 
to lock shared data that is already 
locked



DEMO

Compiling and Running load_balancer.tla
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Distributed Runtime
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Execution Runtime

➔ Goal: reduce the burden on developers by providing 
resources often used in distributed systems
◆ Scheduling setup
◆ Network communication
◆ Global state
◆ Others: file system, time, shared resources, etc...
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Synchronized Start

➔ Allows processes (that may run on different nodes when 
deployed) to coordinate when they start execution
◆ TLA+ weak fairness

➔ Developer can use it to enforce a distributed barrier

52
Proposer

Acceptor

Learner ProposerLearner

Acceptor

Learner

Acceptor

Proposer

✔



Distributed Global State

➔ Provides the abstraction of shared state in a distributed 
system

➔ Exposed as an archetype resource implementation
◆ Makes it easier to migrate PlusCal spec to Modular PlusCal

➔ Data is stored across all nodes in the system
◆ Objects are owned by only one at a time, but can move over time
◆ (Many exciting future work directions hide here :-)
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Distributed Global State: Data Store

Node has value 
for data it owns

No state kept if 
not owned

Ownership may 
be outdated
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Evaluation

55

➔ PGo is 25K LOC (compiler) and 3K (runtime)
➔ Able to compile concurrent and distributed systems
➔ Supports different dist. state strategies



Evaluation

➔ Is the implementation sufficiently robust to support the 
compilation of complex specifications?

➔ Do systems compiled by PGo have behavior that is 
defined by the specification?

➔ What is the performance of systems compiled by PGo, and 
how does it compare with similar, handwritten 
implementations?

56



A partial set of specs that we wrote

➔ Load Balancer model:
◆ Defines interaction of a load balancer, multiple servers and multiple 

clients. Implementations interact with the file system

➔ Replicated Key-Value Store:
◆ Serializable key-value consistency semantics
◆ Replicated state machines using Lamport logical locks to determine 

ordering and stability*
◆ An assignment at UBC in Winter 2019

➔ Raft and Paxos models; no eval for these yet
* as described in Implementing Fault-Tolerant Services Using the State Machine Approach: a Tutorial
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Specification Archetypes Mapping macros MPCal LOC

Load balancer 3 2 79

Replicated KV 5 6 291

Implementation PGo-gen Go LOC Manual Go LOC Total Go LOC

Load balancer 494 85 579

Replicated KV 3,395 234 3,629

MPCal and Go LOC
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Specification Archetypes Mapping macros MPCal LOC

Load balancer 3 2 79

Replicated KV 5 6 291

MPCal and Go LOC
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Implementation PGo-gen Go LOC Manual Go LOC Total Go LOC

Load balancer 494 85 579

Replicated KV 3,395 234 3,629

PGo



Semantic Equivalence

➔ Proof that resulting system is semantically equivalent to 
original model is future work (certified compilation)

➔ Tested both systems
◆ Load balancer: different numbers of clients/servers; files of different sizes; 

verified result was received by client as expected
◆ Replicated Key-Value Store: Different numbers of clients/replicas; keys and 

values as random bytes of configurable length; clients issue request 
sequentially or concurrently; at the end: all replicas are consistent.

◆ All tested student  solutions had bugs when the same test suite was used!
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Performance Comparison

➔ Comparison with handwritten versions of the load 
balancer and replicated key-value store

➔ Experimental setup: all processes running on the same 
node, focus on runtime overhead
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Implementation PGo version (gen) Manual version

Load balancer 579 (494) 156

Replicated KV 3,629 (3,395) 406

5-8x LOC
increase



Load Balancer setup
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Performance results: Load Balancer

Load balancer with one or multiple clients performing 10 (left) or 
100 (right) requests per client.
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Replicated Key-Value Store setup
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Performance results: Replicated Key-Value Store

Time it takes for three clients to perform 100 operations, first 
sequentially (left) and then concurrently (right).
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Discussion
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Discussion: Limitations and Future Work

➔ Compilation is not verified
◆ Trusted: TLC model checker, PGo compiler and runtime, Java compiler 

and runtime, Go compiler and runtime, operating system.

➔ Fault tolerance needs further work
◆ Limited ways to deal with failures; lack of language support

➔ Performance can be improved
◆ Restarting actions can be expensive

➔ Fairness is not guaranteed
◆ Go favors performance over fairness; mismatch with original model
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PGo take-aways

➔ Described how PGo leverages 
separation between system and 
abstractions to generate correct 
distributed systems

➔ More work is necessary to make 
it a viable option for the 
development of 
production-quality distributed 
systems 68https://github.com/ubc-nss/pgo

https://github.com/ubc-nss/pgo

