BZOJ2038 小Z的袜子(莫队算法)

本文介绍了一种解决从特定区间内随机选取两只颜色相同的袜子的概率问题的算法。通过维护选择方案和与区间长度相关的概率,使用莫队维护方法,实现对多个询问的有效处理,输出最简概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。

终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命。

具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R的袜子中随机选出两只来穿。

尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。

你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。

当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

输入格式
第一行包含两个正整数N和M,N为袜子的数量,M为小Z所提的询问的数量。

接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。

再接下来M行,每行两个正整数L,R表示一个询问。

输出格式
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。

若该概率为0则输出0/1,否则输出的A/B必须为最简分数。

数据范围
N,M≤50000,
1≤L<R≤N,
Ci≤N
输入样例:
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
输出样例:
2/5
0/1
1/1
4/15

思路:
维护now = ∑x∗(x−1)/2∑x * (x-1)/2x(x1)/2。now代表取相同数的选择方案和。
总选择数为 (r−l+1)∗(r−l)/2(r - l + 1) * (r - l) / 2(rl+1)(rl)/2.
然后莫队维护就好了

ACNEW

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 7;

struct Node {
    int l,r;
    int id;
}q[maxn];

int a[maxn],num[maxn],len;
pair<ll,ll>res[maxn];
ll ans;

int cmp(Node a,Node b) {
    if(a.l / len == b.l / len) return a.r < b.r;
    return a.l / len < b.l / len;
}

ll gcd(ll n,ll m) {
    return m == 0 ? n : gcd(m,n % m);
}

void add(int x) {
    ans -= num[x] * (num[x] - 1);
    num[x]++;
    ans += num[x] * (num[x] - 1);
}

void del(int x) {
    ans -= num[x] * (num[x] - 1);
    num[x]--;
    ans += num[x] * (num[x] - 1);
}

int main() {
    int n,m;scanf("%d%d",&n,&m);
    len = sqrt(n);
    for(int i = 1;i <= n;i++) {
        scanf("%d",&a[i]);
    }
    for(int i = 1;i <= m;i++) {
        scanf("%d%d",&q[i].l,&q[i].r);
        q[i].id = i;
    }
    sort(q + 1,q + 1 + m,cmp);
    
    int l = 1,r = 0;
    for(int i = 1;i <= m;i++) {
        while(r < q[i].r) {
            r++;
            add(a[r]);
        }
        while(r > q[i].r) {
            del(a[r]);
            r--;
        }
        while(l < q[i].l) {
            del(a[l]);
            l++;
        }
        while(l > q[i].l) {
            l--;
            add(a[l]);
        }
        ll cnt = r - l + 1;
        ll tmp = gcd(ans,cnt * (cnt - 1));
        
        res[q[i].id].first = ans / tmp;
        res[q[i].id].second = cnt * (cnt - 1) / tmp;
    }
    
    for(int i = 1;i <= m;i++) {
        printf("%lld/%lld\n",res[i].first,res[i].second);
    }
    return 0;
}

#pragma GCC optimize(2)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

typedef long long ll;
const int maxn = 1e6 + 7;
int n,m,t,a[maxn],pos[maxn],L[maxn],R[maxn];
ll ans1[maxn],ans2[maxn],cnt[maxn],now;

struct Node
{
    int l,r,id;
}nodes[maxn];

int cmp(Node x,Node y)
{
    return pos[x.l] == pos[y.l] ? x.r < y.r : pos[x.l] < pos[y.l];
}

ll gcd(ll n,ll m)
{
    return m == 0 ? n : gcd(m,n % m);
}

ll cal(ll x)
{
    return x * (x - 1) / 2;
}

void init()
{
    t = sqrt(n*1.0);
    for(int i = 1;i <= t;i++)
    {
        L[i] = t * (i - 1) + 1;
        R[i] = t * i;
    }
    if(R[t] < n)
    {
        t++;
        L[t] = R[t - 1] + 1;
        R[t] = n;
    }
    for(int i = 1;i <= t;i++)
    {
        for(int j = L[i];j <= R[i];j++)
        {
            pos[j] = i;
        }
    }
}

void add(int x)
{
    now -= cal(cnt[a[x]]);
    ++cnt[a[x]];
    now += cal(cnt[a[x]]);
}

void del(int x)
{
    now -= cal(cnt[a[x]]);
    --cnt[a[x]];
    now += cal(cnt[a[x]]);
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i = 1;i <= n;i++)scanf("%d",&a[i]);
    init();
    for(int i = 1;i <= m;i++)
    {
        scanf("%d %d",&nodes[i].l,&nodes[i].r);
        nodes[i].id = i;
    }
    sort(nodes + 1,nodes + 1 + m,cmp);
    int l = 1,r = 0;//l代表1~l-1都没有,r代表r+1~n都没有
    for(int i = 1;i <= m;i++)
    {
        while(l < nodes[i].l)del(l++);
        while(l > nodes[i].l)add(--l);
        while(r < nodes[i].r)add(++r);
        while(r > nodes[i].r)del(r--);
        
        ll x = cal(nodes[i].r - nodes[i].l + 1);
        ll y = now;
        ll tmp = gcd(x,y);
        x /= tmp;y /= tmp;
        ans1[nodes[i].id] = y;
        ans2[nodes[i].id] = x;
    }
    for(int i = 1;i <= m;i++)printf("%lld/%lld\n",ans1[i],ans2[i]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值