【DDIA】第十章:批处理

1. 章节介绍

本章围绕批处理展开,介绍了批处理的基本概念、相关工具及框架。从 Unix 工具的批处理方式入手,阐述其设计理念,进而深入讲解 MapReduce 和分布式文件系统,探讨 MapReduce 之后的数据流引擎等内容,旨在让学习者理解批处理在数据处理中的重要作用及实际应用。

核心知识点面试频率
批处理的三种系统类型划分
Unix 工具的批处理及哲学
MapReduce 作业执行流程
MapReduce 的连接与分组操作
数据流引擎的特点及容错
图与迭代处理的 Pregel 模型

2. 知识点详解

在这里插入图片描述

2.1 批处理的基本概念

  • 系统类型分为服务(在线系统)、批处理系统(离线系统)、流处理系统(准实时系统)。

  • 服务注重响应时间和可用性;批处理系统衡量指标为吞吐量,作业定期运行;流处理系统延迟低于批处理。

  • 批处理是古老的计算方式,Map-Reduce 等推动了大规模数据处理,是构建可靠、可扩展和可维护应用的重要部分。

2.2 使用 Unix 工具的批处理

  • 示例:通过 Unix 命令链(cat、awk、sort、uniq、head 等)分析 Web 服务器日志,快速获取热门网页等信息,且易于修改。

  • 排序与内存聚合对比:Ruby 脚本用内存哈希表统计,适合中小型数据;Unix 依赖排序,可高效利用磁盘处理大于内存的数据集,GNU 的 sort 程序支持并行排序。

  • Unix 哲学:每个程序做好一件事;程序输出可作为其他程序输入;尽早尝试,快速迭代;优先使用工具减轻编程任务。

  • 可组合性:统一接口(文件作为接口);逻辑与布线分离(通过标准输入输出);透明度和实验性(输入不可变,便于调试)。

2.3 MapReduce 和分布式文件系统

  • 分布式文件系统(以 HDFS 为例):基于无共享原则,包含守护进程和 NameNode 服务器,采用复制或纠删码容错,可大规模扩展。

  • MapReduce 作业执行:读取输入分解为记录,Mapper 提取键值对,按键排序,Reducer 处理排序后的键值对。分布式执行时输入分区并行处理,Mapper 尽量在存储数据的机器上运行,Reducer 按哈希分区处理,通过 “混洗” 传输数据。

  • MapReduce 工作流:单个作业功能有限,常链接成工作流,通过目录传递数据,需调度器管理依赖,高级工具可自动组装多阶段工作流。

  • 连接与分组操作:

    • 排序合并连接:Mapper 提取连接键,经分区、排序和合并,相同键记录在 Reducer 处处理实现连接。

    • GROUP BY:按键分组后聚合,用于会话化分析,需处理热点键。

    • Map 端连接:包括广播散列连接(小数据集入内存哈希表)、分区散列连接(输入分区方式相同)、Map 端合并连接(输入分区且排序)。

  • 批处理工作流的输出:可建立搜索索引,输出可作为键值存储,应在作业内创建数据库文件写入分布式文件系统,遵循 Unix 哲学便于维护和容错。

  • Hadoop 与分布式数据库对比:存储多样性(Hadoop 允许任意格式数据)、处理模型多样性(Hadoop 支持任意代码)、故障处理(MapReduce 容忍单个任务失败)。

2.4 MapReduce 之后

  • 数据流引擎(如 Spark、Tez、Flink):将工作流作为单个作业处理,算子组合灵活,减少中间状态物化,优化执行速度。算子连接选项多样,容错通过重新计算,需考虑算子确定性。

  • 图与迭代处理:图批处理用于离线分析,如 PageRank 算法,常迭代实现。Pregel 模型中顶点通过消息通信,迭代处理,框架处理分区和容错。

  • 高级 API 和语言:高级接口(如 Hive、Pig 等)简化编程,支持交互式使用,自动选择优化连接算法,向声明式查询语言转变,兼顾效率和灵活性,应用于多领域算法。

3. 章节总结

本章围绕批处理,从 Unix 工具的理念讲到 MapReduce 及后续的数据流引擎。批处理受 Unix 影响,Unix 以文件和管道为接口,MapReduce 以分布式文件系统为接口,数据流引擎优化中间状态传输。分布式批处理需解决分区(将相关数据放在一起)和容错(处理任务失败)问题,介绍了多种连接算法。批处理框架通过限制编程模型保证可靠性,输入有界,作业最终会完成,下一章将讨论输入无界的流处理。

4. 知识点补充

4.1 补充知识点

  1. 批处理与实时处理的结合:在实际应用中,批处理可与流处理结合,流处理处理实时数据,批处理定期对历史数据进行全量分析,两者结果互补,提高数据处理的完整性和时效性。

  2. 批处理中的数据压缩:为节省存储和传输成本,批处理中常对数据进行压缩。不同的压缩算法(如 Gzip、Snappy、LZO)各有优缺点,需根据数据特点和处理需求选择,例如 Snappy 压缩和解压速度快,适合频繁读写的场景。

  3. 批处理作业的监控与调优:需要对批处理作业进行监控,包括作业运行时间、资源占用(CPU、内存、磁盘 I/O)等指标。通过分析这些指标,可进行调优,如调整分区数量、优化 Mapper 和 Reducer 的逻辑、合理设置内存分配等,提高作业效率。

  4. 数据倾斜的深度处理:除了常见的热点键处理方法,还可通过数据预处理(如拆分热点键、合并小文件)、调整分区策略(如自定义分区函数)等方式更深入地解决数据倾斜问题,避免部分 Reducer 过载。

  5. 批处理在大数据生态中的位置:批处理是大数据生态的重要组成部分,与数据采集(如 Flume、Kafka)、数据存储(如 HDFS、HBase)、实时计算(如 Flink、Storm)等环节紧密协作,共同构成完整的大数据处理流程。

4.2 最佳实践

在批处理作业开发中,合理规划数据分区是提升性能的关键实践。以 MapReduce 处理用户行为日志为例,若按用户 ID 进行分区,能将同一用户的所有行为记录集中到同一分区处理,便于进行用户行为分析等操作。

首先,在数据采集阶段,确保日志格式规范,包含必要的用户标识信息。然后,在 MapReduce 作业中,自定义分区函数,根据用户 ID 的哈希值对数据进行分区,同时合理设置分区数量,一般与集群的节点数量或核心数相匹配,避免分区过多导致资源浪费,或分区过少导致负载不均。

在作业运行过程中,监控各分区的处理进度和资源占用,若发现某一分区处理缓慢,可能存在数据倾斜,可检查该分区的用户数据是否异常,如是否有大量行为记录的热门用户,若有可采用拆分热门用户 ID 等方式进行优化。

此外,对于输出数据,按一定的规则(如日期、用户类型)进行存储分区,便于后续的数据查询和分析。通过合理的分区规划,能显著提高批处理作业的效率,减少数据传输和处理时间,提升整个数据处理流程的性能。

4.3 编程思想指导

在批处理编程中,应秉持 “数据不可变” 和 “单一职责” 的思想。数据不可变意味着一旦数据被写入,就不再修改,而是通过生成新的数据版本来实现更新。这种思想能简化系统设计,避免并发修改带来的问题,同时便于数据回溯和故障恢复。例如,在处理日志数据时,原始日志始终保持不变,所有的分析和处理结果都作为新的数据存储。

单一职责思想要求每个处理组件只负责完成一项特定的任务。在 MapReduce 中,Mapper 负责提取数据的关键信息,Reducer 负责对数据进行聚合处理,两者各司其职,便于代码的编写、测试和维护。当需要新增功能时,只需添加新的处理组件,而无需修改已有的组件,符合开闭原则。

同时,要注重代码的可扩展性和复用性。在设计数据处理逻辑时,尽量采用参数化配置,使代码能适应不同的业务场景。例如,在进行数据过滤时,将过滤条件通过配置文件传入,而不是硬编码在代码中,这样当过滤条件变化时,只需修改配置文件即可。

另外,要充分利用框架的特性,而不是重复造轮子。MapReduce、Spark 等框架已经实现了分布式计算、容错处理等复杂功能,开发者应专注于业务逻辑的实现,合理使用框架提供的 API 和工具,提高开发效率和代码质量。通过遵循这些编程思想,能开发出高效、可靠、易维护的批处理程序。

5. 程序员面试题

5.1 简单题

题目:批处理系统与在线系统的主要区别是什么?

答案:批处理系统(离线系统)处理大量输入数据,生成输出,衡量指标为吞吐量,作业通常定期运行,用户不会等待作业完成;在线系统(服务)等待客户请求,尽快处理并返回响应,注重响应时间和可用性,请求通常由人类用户触发且用户会等待响应。

5.2 中等难度题

题目:简述 MapReduce 的排序合并连接的实现过程。

答案:首先,每个参与连接的输入都通过一个 Mapper,Mapper 的作用是从输入记录中提取连接键,生成键值对。然后,MapReduce 框架会对这些键值对按连接键进行分区,确保具有相同连接键的键值对被分配到同一个 Reducer。接着,对每个分区内的键值对按连接键进行排序。之后,Reducer 会接收来自不同 Mapper 的、属于同一分区且已排序的键值对,并将它们合并在一起,使具有相同连接键的所有记录相邻。最后,Reducer 函数对这些记录进行处理,输出连接好的记录,从而实现排序合并连接。

题目:数据流引擎相比 MapReduce 有哪些优势?

答案:数据流引擎(如 Spark、Flink)相比 MapReduce 具有以下优势:

  1. 减少不必要的排序操作,仅在必要时执行排序,降低计算开销。

  2. 避免不必要的 Map 任务,可将 Mapper 的工作合并到前面的 Reduce 算子中,提高效率。

  3. 能总览工作流全局,利用数据局部性进行优化,如将任务安排在数据所在节点,减少网络传输。

  4. 中间状态可保存在内存或本地磁盘,减少 I/O 操作,比写入 HDFS 更高效。

  5. 算子可在输入就绪后立即执行,后续阶段无需等待前驱阶段完全完成,缩短处理时间。

  6. 可重用 JVM 进程运行新算子,减少启动开销。

5.3 高难度题

题目:在批处理中,如何处理数据倾斜问题?请列举至少三种方法并说明适用场景。

答案:在批处理中,处理数据倾斜的方法及适用场景如下:

  1. 抽样识别热点键并特殊处理:首先通过抽样作业确定哪些键是热点键。对于这些热点键,在 Mapper 阶段将其记录随机发送到多个 Reducer 中的一个;对于连接的另一端输入,与热点键相关的记录复制到所有处理该热点键的 Reducer 上。适用场景:热点键数量较少,且连接的输入中存在明显的热点数据,如社交网络中少数名人的相关记录。

  2. 两阶段分组聚合:当按热点键进行分组聚合时,第一阶段 MapReduce 将记录发送到随机 Reducer,每个 Reducer 对热点键的子集进行分组并输出中间聚合结果;第二阶段 MapReduce 将中间结果合并为每个键的最终值。适用场景:需要对热点键进行聚合操作,且热点键的记录数量极大,如统计热门商品的销量。

  3. 数据预处理拆分热点键:在数据预处理阶段,将热点键拆分为多个子键,如在热点键后添加随机数后缀,使原来的热点数据分散到多个分区。在处理完成后,再将这些子键的结果合并。适用场景:热点键的记录可拆分为独立的部分进行处理,且最终结果可以通过合并子键结果得到,如处理某一热门用户的大量行为记录。

题目:比较 Map 端连接和 Reduce 端连接的优缺点及适用场景。

答案:Map 端连接和 Reduce 端连接的优缺点及适用场景如下:

  • Map 端连接

    • 优点:避免了 Reduce 端连接中的排序、数据复制到 Reducer 及合并等操作,减少了大量的 I/O 和网络传输开销,处理速度更快。

    • 缺点:对输入数据有较多假设和限制,如广播散列连接要求一个输入数据集足够小以加载到内存,分区散列连接要求输入以相同方式分区等。

    • 适用场景:当连接的输入数据集之一较小(广播散列连接),或两个输入数据集以相同方式分区和排序(分区散列连接、Map 端合并连接),且对处理速度要求较高的场景。

  • Reduce 端连接

    • 优点:对输入数据没有特殊要求,适用性广,能处理各种类型和大小的数据集连接。

    • 缺点:需要进行排序、数据传输到 Reducer 并合并等操作,开销较大,处理速度相对较慢。

    • 适用场景:当输入数据集不满足 Map 端连接的条件,如两个数据集都较大且分区方式不同,或者无法确定输入数据的特点时,适合使用 Reduce 端连接。

内容概要:本文档提供了关于“微型车间生产线的设计与生产数据采集试验研究”的毕业设计复现代码,涵盖从论文结构生成、机械结构设计、PLC控制系统设计、生产数据采集与分析系统、有限元分析、进度管理、文献管理和论文排版系统的完整实现。通过Python代码和API调用,详细展示了各个模块的功能实现和相互协作。例如,利用SolidWorks API设计机械结构,通过PLC控制系统模拟生产流程,使用数据分析工具进行生产数据的采集和异常检测,以及利用进度管理系统规划项目时间表。 适合人群:具有机械工程、自动化控制或计算机编程基础的学生或研究人员,尤其是从事智能制造领域相关工作的人员。 使用场景及目标:①帮助学生或研究人员快速搭建和理解微型车间生产线的设计与实现;②提供完整的代码框架,便于修改和扩展以适应不同的应用场景;③作为教学或科研项目的参考资料,用于学习和研究智能制造技术。 阅读建议:此资源不仅包含详细的代码实现,还涉及多个学科领域的知识,如机械设计、电气控制、数据分析等。因此,在学习过程中,建议读者结合实际操作,逐步理解每个模块的功能和原理,并尝试调整参数以观察不同设置下的系统表现。同时,可以参考提供的文献资料,深入研究相关理论和技术背景。
本次的学生体质健康信息管理网站,按照用户的角色可以分为教师与学生,后台设置管理员角色来对学生的信息进行管理。,设计如下: 1、后台管理系统 后台管理系统主要是为该系统的管理员提供信息管理服务的系统,具体包括的功能模块如下: (1)管理员信息管理 (2)教师信息管理 (3)学生信息管理 (4)健康信息统计(图形化进行健康,亚健康等学生的信息数量统计) 2、教师角色的功能模块设计 教师角色所需要的功能模块主要包括了如下的一些内容: (1)个人资料修改 (2)学生体质健康管理:录入相关数据,包括但不限于身高、体重、肺活量、视力等生理指标以及运动能力、身体成分、骨密度等健康指标,并且设置健康,亚健康状态 (3)学生健康建议:根据体质信息,进行学生健康的建议 (4)健康预警:对健康出问题的学生,进行健康预警 (5)饮食和锻炼情况管理,查看 3、学生角色 学生角色可以通过该信息网站看到个人的基本信息,能够看到教师给与学生的健康建议等,功能模块设计如下: (1)个人资料修改 (2)我的健康建议查看 (3)我的健康预警 (4)饮食和锻炼情况管理,记录平时的饮食和锻炼情况 完整前后端源码,部署后可正常运行! 环境说明 开发语言:Java后端 框架:ssm,mybatis JDK版本:JDK1.8+ 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:eclipse/idea Maven包:Maven3.3+ 部署容器:tomcat7.5+
网站前台: (1)站内新闻:及时发布康复中心动态、行业资讯等,让用户了解最新消息。 (2)用户注册,登录:支持用户注册新账号并登录系统,开启预约等操作。 (3)科室介绍:详细介绍康复中心各科室,含功能、特色治疗等信息。 (4)医生列表,详情:展示医生信息,如履历、擅长领域,助用户选医生。 (5)老年生活风采:呈现老年人康复生活照片等,展示康复后的精彩状态。 (6)预约入院:用户填写姓名、电话等信息,提交入院预约申请。 网站后台: 管理员 (1)管理员密码修改:管理员可自主修改登录密码,保障账号安全。 (2)用户注册管理,审核:对新用户注册信息审核,确保信息真实合规。 (3)站内新闻管理:发布、编辑、删除站内新闻,把控资讯更新与质量。 (4)科室信息管理:维护科室信息,包括介绍、设备等内容的增删改。 (5)医生信息管理:管理医生资料,可更新履历、擅长方向等信息。 (6)老年生活风采管理:上传、整理、替换老年生活风采相关展示内容。 (7)预约入院管理:处理用户入院预约,安排入院时间和流程。 用户 (1)用户资料修改:用户可修改个人注册资料,保证信息准确性。 (2)我的预约住院结果:查询预约入院审核结果,了解住院安排情况。 完整前后端源码,部署后可正常运行! 环境说明 开发语言:Java后端 框架:ssm,mybatis JDK版本:JDK1.8+ 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:eclipse/idea Maven包:Maven3.3+ 部署容器:tomcat7.5+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值