流媒体2020最新研究场景与ideal

本文综述了流媒体领域的最新研究成果,包括WebRTC、QoE优化、多路径传输、智能缓存等关键技术,并探讨了这些技术如何提高用户体验及网络效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

流媒体论文最新研究场景与ideal

场景论文等级简介
WebRTCMulti-Party WebRTC Services Using Delay and Bandwidth Aware SDN-Assisted IP Multicasting of Scalable Video Over 5G NetworksTMM20
Motion-Based Rate Adaptation in WebRTC Videoconferencing Using Scalable Video CodingTMM19
QOEStreaming Video QoE Modeling and Prediction: A Long Short-Term Memory ApproachTCSVT20
DeepCast: Towards Personalized QoE for Edge-Assisted Crowdcast With Deep Reinforcement LearningTON20
Leveraging QoE Heterogeneity for Large-Scale Livecast SchedulingMM20
Rldish: Edge-Assisted QoE Optimization of HTTP Live Streaming with Reinforcement LearningINFOCOM20
Livesmart: a QoS-Guaranteed Cost-Minimum Framework of Viewer Scheduling for Crowdsourced Live StreamingMM19
End-to-End Transport for Video QoE FairnessSIGCOM19
Intelligent Edge-Assisted Crowdcast with Deep Reinforcement Learning for Personalized QoEINFOCOM19
DeepQoE: Real-time Measurement of Video QoE from Encrypted Traffic with Deep LearningIWQOS19
QoE in Video Transmission: A User Experience-Driven StrategyCommunications Surveys & Tutorials16
Multi-viewerMultiLive: Adaptive Bitrate Control for Low-delay Multi-party Interactive Live StreamingInfocom20
A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism for Delay-Sensitive ApplicationsTMC20
Viewport-Adaptive Scalable Multi-User Virtual Reality Mobile-Edge StreamingTIP20
GroupCast: Preference-Aware Cooperative Video Streaming With Scalable Video CodingTON19
Multi-User Cooperative Mobile Video Streaming: Performance Analysis and Online Mechanism DesignTMC19公平性与资源分配
CacheIntelligent Video Caching at Network Edge: A Multi-Agent Deep Reinforcement Learning ApproachInfocom20
MultiPathMPTCP+: Enhancing Adaptive HTTP Video Streaming over MultipathIWQOS20
Revisiting Multipath Congestion Control for Virtualized Cloud EnvironmentsIWQOS20
Optimized Preference-Aware Multi-Path Video Streaming with Scalable Video CodingTMC20
Shared Bottleneck-Based Congestion Control and Packet Scheduling for Multipath TCPTON20
Energy-Efficient Multipath TCP for Quality-Guaranteed Video Over Heterogeneous Wireless NetworksTMM19
FUSO: Fast Multi-Path Loss Recovery for Data Center NetworksTON18
Improving Multipath Video Transmission With Raptor Codes in Heterogeneous Wireless NetworksTMM18
SmartStreamer: Preference-Aware Multipath Video Streaming Over MPTCPTVT19
Deadline-awaredDA&FD–Deadline-Aware and Flow Duration-Based Rate Control for Mixed Flows in DCNsTON20
Task Scheduling in Deadline-Aware Mobile Edge Computing SystemsLOT19
Modelling and Analysis of A Novel Deadline-Aware Scheduling Scheme for Cloud Computing Data CentersTCC18
Deadline-Aware Multipath Communication: An Optimization ProblemDSN17
Delay-Aware Flow Scheduling In Low Latency Enterprise Datacenter Networks: Modeling and Performance AnalysisTCOM17
Deadline-aware TCP Congestion Control for Video Streaming ServicesCNSM16
CCHPCC: High Precision Congestion ControlSIGCOM19
ABRCBA: Contextual Quality Adaptation for Adaptive Bitrate Video StreamingINFOCOM19
Pano: Optimizing 360° Video Streaming with a Better Understanding of Quality PerceptionSIGCOM19
A Distributed Approach for Bitrate SelectionMM18
Improving QoE of ABR Streaming Sessions through QUIC RetransmissionsMM18
Streaming High-Definition Real-Time Video to Mobile Devices with Partially Reliable TransferTMC19
ECN Marking With Micro-Burst Traffic: Problem, Analysis, and ImprovementTON18
Priority-Aware FEC Coding for High-Definition Mobile Video Delivery Using TCPTMC17
Prius: Hybrid Edge Cloud and Client Adaptation for HTTP Adaptive Streaming in Cellular NetworksTCSVT16
protocolPluginizing QUIC ∗SIGCOM19
Towards Influence of Chunk Size Variation on Video Streaming in Wireless NetworksTMC20
short videoAutoSight: Distributed Edge Caching in Short Video NetworkIEEE Network20
Deep Learning-based Short Video Recommendation and Prefetching for Mobile Commuting UsersSIGCOM19
A Cooking Support System by Extracting Difficult Scenes for Cooking Operations from Recipe Short VideosMM19
SVD: A Large-Scale Short Video Dataset for Near-Duplicate Video RetrievalICCV19数据集
Short video game play improves executive function in the oldest old living in residential careCHE20
Humor and camera view on mobile short-form video apps influence user experience and technology-adoption intent, an example of TikTok (DouYin)CHE20
Impacts of cues on learning: Using eye-tracking technologies to examine the functions and designs of added cues in short instructional videosCHE20
LiveClip: towards intelligent mobile short-form video streaming with deep reinforcement learningNOSSDAV20
Best Frame Selection in a Short VideoWACV2011000条短视频数据集
Short Video Classification Based on Spatio-Temporal Features and SVMICIS19

后续将不断完善。

### 可视化大屏的理想实现方式最佳实践 #### 1. 页面适配的最佳策略 为了确保可视化大屏在不同分辨率下的显示效果一致,推荐使用 **vw 和 rem 的混合布局** 方法。这种做法不仅能够提供更好的用户体验,还允许设置最大和最小宽度的限制[^1]。此外,这种方法也便于未来项目的升级,例如从传统的 `rem` 弹性布局平滑过渡到基于视口单位的 `vw` 布局。 #### 2. 技术选型建议 对于前后端分离架构的大屏项目,可以参考以下技术栈: - 后台服务:采用 Spring Boot 提供稳定的数据接口支持[^2]。 - 数据可视化:借助百度 ECharts 或 D3.js 这样的成熟库来构建动态图表和交互功能。 - 大屏模板设计工具:利用像华为云 AppCube 的 DMAX 组件或者数字冰雹 IOC 平台这样的低代码/无代码解决方案,简化复杂界面的设计过程并提升效率[^3]。 #### 3. 系统架构规划 理想的系统架构应遵循模块化的理念,并结合实际需求合理划分各部分职责。例如,可以通过六大部分——工作区子系统、配线子系统、设备间子系统等共同构成完整的综合布线体系[^4]。这样既保证了系统的高可用性和扩展能力,又方便后续维护操作。 #### 4. 性能优化措施 针对大规模数据处理场景,则需特别关注以下几个方面以提高渲染速度及响应时间: - 使用 Web Worker 将耗时计算移至后台执行; - 对频繁更新的内容区域单独刷新而非整页重绘; - 预加载可能用到的所有资源文件减少延迟感。 以下是简单的 CSS 示例展示如何定义字体大小适应屏幕尺寸变化: ```css html { font-size: calc(10px + (24 - 10) * ((100vw - 320px) / (1920 - 320))); } body { margin: 0; padding: 0; width: 100%; height: 100vh; background-color: black; /* 黑底 */ color: white; /* 白字 */ } .container { display: grid; place-items: center; text-align: center; line-height: normal; } ``` 以上代码片段展示了通过媒体查询配合calc()函数调整根元素fontSize从而影响整个文档流中的相对长度单位表现形式之一种方法[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值