神经网络----评估体系

1,精度(accuracy)=正确的个数/总个数

2,准确率(precision)=预测为A类的个数中真实为A类的个数/预测为A类的个数

3, 召回率(recall)=真实为A类的个数中预测为A类的个数/真实为A类的个数

4,F1值是查准率与查全率的统一 (1+x)*P*R/(x*P+R)  当x>1时,查全率有更大的影响,当x<1时,查准率有更大的影响

 

对于广告投放,为了避免打扰客户,尽量提高查准率

对于恶意数据,为了保证安全,尽量提高查全率

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值