九十二、Spark-SparkSQL(统计电影平均分Top10)

对电影评分数据进行分析,使用SQL编程,获取电影平均分Top10,要求电影的评分次数大于200

数据展示

 代码

package org.example.SQL

import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

//电影数据分析

object sql_Movie {

  def main(args: Array[String]): Unit = {
    Logger.getLogger("org").setLevel(Level.ERROR)
    val spark: SparkSession = SparkSession.builder().appName("sparksql").master("local[*]")
      .config("spark.sql.shuffle.partitions", 4)
      .getOrCreate()
    import spark.implicits._

    val ds: Dataset[String] = spark.read.textFile("data/text/rating_100k.data")

    //    ds.printSchema()
    //    ds.show()
    val movies: DataFrame = ds.map(line => {
      val arr: Array[String] = line.split("\t")
      (arr(1), arr(2).toInt)
    }).toDF("movieid", "score")
    movies.printSchema()
    movies.show()

    //统计 评分次数>200的电影平均分Top10
    movies.createOrReplaceTempView("movie")
    var sql =
      """
      select movieid,count(*) as counts,avg(score) as avgs
      from movie
      group by movieid
      having counts >200
      order by avgs
      limit 10
    """.stripMargin
    spark.sql(sql).show()

  }
}

数据打印

+-------+-----+
|movieid|score|
+-------+-----+
|    242|    3|
|    302|    3|
|    377|    1|
|     51|    2|
|    346|    1|
|    474|    4|
|    265|    2|
|    465|    5|
|    451|    3|
|     86|    3|
|    257|    2|
|   1014|    5|
|    222|    5|
|     40|    3|
|     29|    3|
|    785|    3|
|    387|    5|
|    274|    2|
|   1042|    4|
|   1184|    2|
+-------+-----+

结果输出

+-------+------+------------------+
|movieid|counts|              avgs|
+-------+------+------------------+
|    678|   219| 2.808219178082192|
|    235|   217| 2.847926267281106|
|    323|   240| 2.933333333333333|
|    289|   259|2.9806949806949805|
|    546|   254| 3.031496062992126|
|    322|   218|3.0871559633027523|
|    245|   240|3.1083333333333334|
|    748|   316|3.1234177215189876|
|    597|   206| 3.150485436893204|
|    294|   485| 3.156701030927835|
+-------+------+------------------+

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

托马斯-酷涛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值