一零一二、Spark- RDD-DF-DS 相互转换

该博客介绍了 Spark SQL 中 RDD、DataFrame 和 Dataset 之间的相互转换方法。通过示例代码展示了如何将 RDD 转换为 DataFrame 和 Dataset,以及如何将 DataFrame 和 Dataset 转换回 RDD。同时,强调了在进行转换时导入 `spark.implicits._` 的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入文件

 

代码

package example.spark.sql

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object RDD_DF_DS {
  def main(args: Array[String]): Unit = {
    val spark: SparkSession = SparkSession.builder().appName("sparksql").master("local[6]").config("spark.sql.warehouse.dir", "E:/").getOrCreate()
    val sc: SparkContext = spark.sparkContext

    Logger.getLogger("org").setLevel(Level.ERROR)
    val lines: RDD[String] = sc.textFile("data/input/csv")


    //    val personRDD: RDD[(Int,String,Int)] = lines.map(line => {
    val personRDD: RDD[Person] = lines.map(line => {

      val str: Array[String] = line.split(",")
      //      (str(0).toInt, str(1), str(2).toInt)
      Person(str(0).toInt, str(1), str(2).toInt)
    })
    //转换1: RDD->DF
    import spark.implicits._
    val personDF: DataFrame = personRDD.toDF("id", "name", "age")

    //转换2:RDD->DS
    val personDS: Dataset[Person] = personRDD.toDS()

    //转换3:DF->RDD   DF没有泛型
    val rdd: RDD[Row] = personDF.rdd

    //转换4:DS->RDD
    val rdd1: RDD[Person] = personDS.rdd

    //转换5:DF-->DS
    val ds: Dataset[Person] = personDF.as[Person]

    //转换6:DS-->DF
    val df: DataFrame = personDS.toDF()

    personDF.show()
    personDS.show()
    rdd.foreach(println)
    rdd1.foreach(println)

    //关闭资源
    spark.stop()
  }

  case class Person(id: Int, name: String, age: Int)
}

结果打印

+---+--------+---+
| id|    name|age|
+---+--------+---+
|  1|zhangsan| 20|
|  2|    lisi| 29|
|  3|  wangwu| 25|
|  4| zhaoliu| 30|
|  5|  tianqi| 35|
|  6|    kobe| 40|
+---+--------+---+

+---+--------+---+
| id|    name|age|
+---+--------+---+
|  1|zhangsan| 20|
|  2|    lisi| 29|
|  3|  wangwu| 25|
|  4| zhaoliu| 30|
|  5|  tianqi| 35|
|  6|    kobe| 40|
+---+--------+---+

[1,zhangsan,20]
[2,lisi,29]
[4,zhaoliu,30]
[3,wangwu,25]
[5,tianqi,35]
[6,kobe,40]
Person(1,zhangsan,20)
Person(4,zhaoliu,30)
Person(5,tianqi,35)
Person(6,kobe,40)
Person(2,lisi,29)
Person(3,wangwu,25)

1)DF/DS转RDD
Val Rdd = DF/DS.rdd
2) DS/RDD转DF
import spark.implicits._
调用 toDF(就是把一行数据封装成row类型)
3)RDD转DS
将RDD的每一行封装成样例类,再调用toDS方法
4)DF转DS
根据row字段定义样例类,再调用asDS方法[样例类]

特别注意:在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

托马斯-酷涛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值