剑指 Offer 51. 数组中的逆序对

该博客主要讨论了如何在给定数组中计算逆序对的数量。提供的解决方案使用了归并排序的思路,通过递归地将数组分成两部分,然后在合并过程中计算逆序对。这种方法在保证正确性的前提下,有效地减少了计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指 Offer 51. 数组中的逆序对
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:

输入: [7,5,6,4]
输出: 5

限制:

0 <= 数组长度 <= 50000
class Solution {
    private:
    int count = 0;
public:
    int reversePairs(vector<int>& nums) {
        // int count = 0;
        // for(int i = 0; i < nums.size(); ++i){
        //     for(int j = i + 1; j < nums.size(); ++j){
        //         if(nums[i] > nums[j]){
        //             ++count;
        //         }
        //     }
        // }
        // return count;
        merge(nums, 0, nums.size() - 1);
        return count;
    }

    void merge(vector<int> &nums, int left, int right){
        int mid = left + (right - left) / 2;
        if(left < right){
            merge(nums, left, mid);
            merge(nums, mid + 1, right);
            mergeSort(nums, left, mid, right);
        }
    }

    void mergeSort(vector<int> &nums, int left, int mid, int right){
        vector<int> temp(right - left + 1);
        int temp1 = left, temp2 = mid + 1;
        int index = 0;
        while(temp1 <= mid && temp2 <= right){
            if(nums[temp1] <= nums[temp2]){
                temp[index++] = nums[temp1++];
            } else {
                count += (mid - temp1 + 1);
                temp[index++] = nums[temp2++];
            }
        }

        while(temp1 <= mid){
            temp[index++] = nums[temp1++];
        }
        while(temp2 <= right){
            temp[index++] = nums[temp2++];
        }
        for(int i = 0; i < temp.size(); ++i){
            nums[i + left] = temp[i];
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值