C++ 两数相除
给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
示例1
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例2
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2
提示:
- 被除数和除数均为 32 位有符号整数。
- 除数不为 0。
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
思路/解法
例如11除以3,首先11比3大,那么结果至少为1,然后让3翻倍,就是6,此时发现11比3的翻倍(6)还要大,那么结果就至少是2。这时让6再翻倍,得12,此时11不比12大,那么此时我们唯一能确定的就是结果肯定在2~4之间,也就是2再加上一个数就是结果。让11减去最后一次的结果(6),剩下5。我们计算5是3的多少倍,这时递归的思想就可以利用。
在该作者的基础上进行优化,不适用long类型。防止溢出关键就在于在a,b判断正负时,可能内存溢出。这时我们只需要都按照负数的情况就行判断即可。
class Solution
{
public:
int div(int a,int b) //难点
{
if(a > b)
{
return 0;
}
int count = 1;
int tb = b;
while((a - tb) <= tb)
{
count = count + count;
tb = tb + tb;
}
return count + div(a - tb, b);
}
int divide(int dividend, int divisor)
{
if(0 == dividend)
{
return 0;
}
if(1 == divisor)
{
return dividend;
}
if(-1 == divisor)
{
if(dividend > INT_MIN)
{
return -dividend;
}
return INT_MAX;
}
int a = dividend;
int b = divisor;
int sign = 1;
if((a > 0 && b < 0) || (a < 0 && b > 0))
{
sign = -1;
}
a = a < 0? a : -a;
b = b < 0? b : -b;
int res = div(a, b);
if(sign > 0)
{
return res > INT_MAX? INT_MAX : res;
}
return -res < INT_MIN? INT_MIN : -res;
}
};