极智AI | 昇腾 CANN ATC 模型转换

本文详细介绍了昇腾CANN ATC工具在AI模型转换中的作用,特别是对于pytorch和darknet模型的转换步骤。CANN是针对AI场景的异构计算架构,支持多种模型转换为.om模型进行推理。ATC工具支持caffe、onnx、tf pb和mindspore模型转换,并具备AIPP智能图像预处理功能,简化了预处理操作。文章还列举了ATC的参数选项,为读者提供了全面的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的公众号 [极智视界],获取我的更多笔记分享

  大家好,我是极智视界,本文介绍一下 昇腾 CANN ATC 模型转换

  昇腾 CANN 的全称是 Compute Architecture for Neural Networks,是昇腾针对 AI 场景推出的异构计算架构,通过提供多层次的编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。用过昇腾的同学应该都清楚,需要把咱们的原始模型 (可能是 pytorch 的,可能是 tf 的,可能是 caffe 的,也可能是 darknet 的) 转换成 .om 模型,然后才能调用 AclLiteModel::ExecuteEx() 进行模型的推理。这个 模型转换的过程 就要用到 CANN 的 ATC 工具。目前 ATC 工具直接支持从 caffe、onnx、tf pb 以及 mindspore 模型的转换,所以如果你的训练框架是 pytorch,则需要做 torch.onnx.export 的操作;如果你的训练框架是 darknet,则需要做 darknet -> caffedarknet -> onnx 的转换,之后才能用到 ATC。以上说的是整网模型,当然 ATC 还支持用 Ascend IR 定义的单算子的 om 转换。因此就形成了如下的 ATC 功能架构图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值