spark和flink的区别

Flink是一个专注于实时流处理的框架,具备低延迟和高扩展性,其Stream数据结构代表持续变化的数据流,支持状态操作。相比之下,Spark主要处理批量和微批任务,虽然SparkSQL的SQL支持更成熟,但在实时流处理上不及Flink。Flink通过逐条处理数据流提供更低的延迟,而Spark使用批处理模拟流处理,可能造成更高的延迟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大区别
flink是基于事件的真正的实时流式处理,Spark是批量或者微批处理
Flink 用流处理去模拟批处理的思想,比Spark 用批处理去模拟流处理的思想扩展性更好。

Flink最核心的数据结构是Stream,它代表一个运行在多分区上的并行流。
在 Stream 上同样可以进行各种转换操作(Transformation)。与 Spark 的 RDD 不同的是,Stream 代表一个数据流而不是静态数据的集合。所以,它包含的数据是随着时间增长而变化的。而且 Stream 上的转换操作都是逐条进行的,即每当有新的数据进来,整个流程都会被执行并更新结果。这样的基本处理模式决定了 Flink 会比 Spark Streaming 有更低的流处理延迟性。

状态
Flink比Spark支撑更多的状态操作。

Spark比flink有的优势
从SQL 功能的角度来讲,Spark和Flink分别提供SparkSQL和Table APl提供SQL

Spark对SQL支持更好,相应的优化、扩展和性能更好,而Flink在SQL支持方面还有很大提升空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值