
Integrating DRAM Power-Down Modes in gem5 and
Quantifying their Impact

Radhika Jagtap
Arm Ltd.

Cambridge, U.K.
radhika.jagtap@arm.com

Matthias Jung
Fraunhofer IESE

Kaiserslautern, Germany
matthias.jung@iese.fraunhofer.de

Wendy Elsasser
Arm Inc.

Austin, TX, U.S.A.
wendy.elsasser@arm.com

Christian Weis
University of Kaiserslautern
Kaiserslautern, Germany

weis@eit.uni-kl.de

Andreas Hansson
Arm Ltd.

Cambridge, U.K.
andreas.hansson@arm.com

Norbert Wehn
University of Kaiserslautern
Kaiserslautern, Germany
wehn@eit.uni-kl.de

ABSTRACT
Across applications, DRAM is a significant contributor to the overall
system power, with the DRAM access energy per bit up to three
orders of magnitude higher compared to on-chip memory accesses.
To improve the power efficiency, DRAM technology incorporates
multiple power-downmodes, eachwith different trade-offs between
achievable power savings and performance impact due to entry
and exit delay requirements. Accurate modeling of these low power
modes and entry and exit control is crucial to analyze the trade-
offs across controller configurations and workloads with varied
memory access characteristics. To address this, we integrate the
power-down modes into the DRAM controller model in the open-
source simulator gem5. This is the first publicly available full-system
simulator with DRAM power-down modes, providing the research
community a tool for DRAM power analysis for a breadth of use
cases. We validate the power-down functionality with sweep tests,
which trigger defined memory access characteristics. We further
evaluate the model with real HPC workloads, illustrating the value
of integrating low power functionality into a full system simulator.

This is an accepted version of the ACMpublished article available
at https://dl.acm.org/citation.cfm?id=3132402.3132444

KEYWORDS
DRAM, Power-Down, Simulation, gem5, Power

ACM Reference Format:
Radhika Jagtap, Matthias Jung, Wendy Elsasser, Christian Weis, Andreas
Hansson, and Norbert Wehn. 2017. Integrating DRAM Power-Down Modes
in gem5 and Quantifying their Impact. In Proceedings of MEMSYS 2017,
Alexandria, VA, USA, October 2–5, 2017, 10 pages.
https://doi.org/10.1145/3132402.3132444

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5335-9/17/10. . . $15.00
https://doi.org/10.1145/3132402.3132444

1 INTRODUCTION
System designers usually focus on optimizing for performance,
which means that they "make the common case fast". But the com-
mon case for real systems like a smart phone or web server is very
often "doing nothing". However, doing nothing could consume a
significant amount of standby power. Therefore, we need to design
for the common case from a power perspective, which means that
we have to "do nothing well" [1]. For the design of DRAM subsys-
tems this translates to efficient power-down strategies, which are
the only way to reduce the power consumption when there is no
memory activity.

The usage profiles of typical smartphone users show a burst-like
behavior [11]. Users expect to resume their applications in the state
last used. When the phone is not in use, applications therefore
store their data in the memory. Both, the short bursts of intensive
smart-phone usage and the standby or idle phases require power
optimization. For production servers and data centers, analysis has
shown that servers are idle over 60% of the time. Further, DRAM
consumes 20% to 40% of the total system power [36] and enabling
DRAM power-down modes (i.e. power-down and self-refresh) is a
must for effective cross-layer energy efficiency solutions [36]. For
example, self-refresh mode saves a significant amount of power
and transitions into and out of self-refresh can be completed in less
than a microsecond [36].

In summary, the utilization of the available DRAM bandwidth
and the use of power-down modes are major contributions to high
energy efficiency of DRAM subsystems and in turn of complete
integrated systems. In existing publicly available DRAM simulators,
low power modes are either missing or only a subset of them are
modelled.

In this paper, we describe the low power DRAM functionality
we contributed to the open-source simulator gem5 [3]. To the best
of our knowledge, the code we released makes gem5 the first pub-
licly available full-system simulator featuring power-down modes.
gem5 also has a well correlated DRAM power tool DRAMPower [6]
integrated within it making it a complete framework for energy
efficiency studies. We validate the power-down functionality by a
thorough characterization involving sweep testing. Additionally,
we evaluate the model using realistic workloads from the High
Performance Computing (HPC) domain. Our contribution enables
energy efficiency studies for a broad range of systems spanning

ar
X

iv
:1

80
3.

07
61

3v
1

 [
cs

.A
R

]
 2

0
M

ar
 2

01
8

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA Radhika Jagtap, Matthias Jung et al.

Precharging

SREF IDLE REF
SREFEN

SREFEX

REFA

PDNP

PDE

PDX

PDNA

PDE
PDX

A
C
T

Bank
Active

Activating

WR RD

Writing

WR

Reading

RD

Writing Reading

RDAWR
A

RD

WR

WRA
RDA

P
R
E
/
P
R
E
A

PRE/PREA

PR
E/
PR
EA

Automatic Sequence

Command Sequence

W
R
A

R
D
A

Figure 1: State diagram of DRAM commands according to
JEDEC [33], power-down modes highlighted in grey [23]

smartphones, servers and HPCwhich would be tedious at best if not
impossible due to proprietary nature of available tools. In summary,
our contributions are as follows.

(1) release of DRAM power-down modes in gem5
(2) model validation using low-level sweep testing
(3) model evaluation using realistic workloads
The remainder of this paper is organised as follows. The back-

ground and related work is covered in Sections 2 and 6, respectively.
We describe our power state model in Section 3 and its behavioural
validation in Section 4. Finally we evaluate our model using real
workloads in Section 5 and conclude in Section 7.

2 BACKGROUND
In today’s Systems on Chip (SoCs) DRAM is a major contributor
to the total power consumption. For instance, the authors of [4]
show in a power breakdown of a recent smartphone that DRAM
contributes around 17% to the total system power. Moreover, there
are applications, such as the GreenWave computing platform [29],
in which 49% of the total power consumption has to be attributed to
DRAMs, and even 80% for a system that imitates the human cortex
based on an Application Specific Integrated Circuit (ASIC), as shown
in [13]. In fact, the energy consumed per bit for accessing off-chip
DRAM is two to three orders of magnitude higher than the energy
required for on-chip memory accesses [27]. This is due to complex
and power hungry I/O transceiver circuits that have to deal with
the electrical characteristics of the high-speed interconnections
(transmission lines) between the chips.

Furthermore, DRAMs must be refreshed regularly due to their
charge based bit storage property (capacitor). This DRAM refresh
operation must be issued periodically and causes both performance
degradation, with respect to bandwidth and latency, and increased
energy consumption. For example, if we consider a computer with
4TB of DRAM, turning the DRAM on will immediately draw ≈
290W of standby power1. However if the self-refresh power-down
mode is used the standby power is reduced to ≈ 200W2.

In summary, energy consumption of DRAMmemory sub-systems
has become a significant concern for a broad range of use-cases. By
utilizing the available DRAM bandwidth efficiently and by putting
the DRAMdevice in power-downmodes when there are nomemory
requests, we can achieve higher overall system energy efficiency.

DRAMs are organized in a three-dimensional fashion of banks,
rows and columns. A DRAM device has usually eight (DDR3) or
16 (DDR4) banks, which can be used concurrently (bank paral-
lelism). However, there are some constraints due to the shared data
command/address bus. Each bank consist of e.g. 212 to 218 rows,
whereas each row can store e.g. 512 B to 2 KB of data. The task
of the DRAM controller is to translate incoming read and write
requests to a sequence of DRAM commands. The controller must
issue commands based on the state of the device and honor timing
constraints for the specific DRAM standard defined by JEDEC.

Figure 1 shows a simplified state diagram including the states
and the commands to transition between states as per JEDEC [33].
To access data in a row of a certain bank, the activate command
(ACT) must be issued by the controller before any column access, i.e.
read (RD) orwrite command (WR) can be executed. The ACT command
opens an entire row of the memory array, which is transferred into
the bank’s row buffer3. It acts like a small cache that stores the
most recently accessed row of the bank. If a memory access targets
the same row as the currently cached row in the buffer (called row
hit), it results in a low latency and low energy memory access.
Whereas, if a memory access targets a different row as the current
row in the buffer (called row miss), it results in higher latency and
energy consumption. If a certain row in a bank is active it must be
precharged (PRE) before another row can be activated. In addition
to RD and WR commands, there exist read and write commands with
an integrated auto-precharge, i.e. RDA and WRA. If auto-precharge is
selected, the row being accessed will be precharged at the end of
the read or write access without a PRE command (shown in Figure 1
by the dotted line arrows). In that context the term page policy is
used.

1 The standby power can be calculated as:

P = 512· tRFC · (VDD · IDD5B +VPP · IPP5B) +VDD · (tREF I − tRFC) · IDD2N
tREF I

.

For 512 DRAM DIMMs with size of 8GB each (e.g. Micron MTA8ATF1G64AZ [34]) and
the following parameters: IDD5B = 1800mA, IPP5B = 240mA, IDD2N = 400mA,
tRFC = 350 ns, tREF I = 7.8 µs, VDD = 1.2V, VPP = 2.5V, f = 1200MHz the
resulting power is P = 289.24W.

2 The self-refresh power can be calculated to a first approximation as:

P = 512 · (VDD · IDD6 +VPP · IPP6) = 198W.

where IDD6 = 240mA and IPP6 = 40mA for the example DIMM [34].

3 The row buffer is a model, which abstracts the real physical DRAM architecture
(primary and secondary sense amplifiers). For further details on internal DRAM archi-
tecture we refer to [18, 21].

Integrating DRAM Power-Down Modes in gem5 andQuantifying their Impact MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

There are two basic page policies called the Open Page Policy
(OPP) and the Close Page Policy (CPP). The OPP keeps the current
row active after a RD or WR, whereas the CPP precharges the row
automatically using the RDA and WRA commands. The CPP is often
used for server applications (e.g. webserver), where the accessed
DRAM addresses are typically uniformly random. The OPP is used
in desktop PCs and mobile devices where row hits are more likely
due to a higher data locality. The improved Adaptive Page Policy
(APP) keeps the row open if there are already queued accesses to
the open row [14] and can be used in combination with scheduling.

As already mentioned, a DRAM cell must usually be refreshed
every 64ms to retain the data stored in it. Modern DRAMs are
equipped with an Auto-Refresh (REFA) command to perform this
operation. Besides the normal active mode operations presented
above, a DRAM is capable of entering power-down modes to save
energy by setting the clock-enable signal cke to low. There ex-
ist three major power-down modes called Precharge Power-Down
(PDNP), Active Power-Down (PDNA) and Self-Refresh (SREF). Thus,
a device can be in one of five states defined below and shown in
Figure 1 [23].

• Active: At minimum one bank is active, no power-down
(cke=1), no internal refresh (the DRAM controller has to
schedule refresh commands).

• IDLE: All banks are closed and precharged, no power-down
(cke=1), no internal refresh. The DRAM changes the state
from Active to IDLE by issuing a precharge command (PRE).

• Precharge Power-Down (PDNP): All banks are closed and
precharged (in IDLE state, cke=0) and no internal refresh.

• Active Power-Down (PDNA): At minimum one bank is ac-
tive (in Active state, cke=0) and no internal refresh.

• Self-Refresh (SREF): All banks are precharged and closed,
the DRAM internal self-timed refresh is triggered (cke=0).

The power saving potential depends on the duration of each
power-down mode. Power-down modes could reduce performance
because of their non-zero exit times. Therefore, the power-down
functionality in the controller must identify the optimal point to
enter a power-down state. The conditions for transitioning to a
power-down state include an empty request queue and no pending
events. In some controllers, after such conditions are met there is a
timeout counter to delay the entry into a power-down mode. This is
to ensure that the compute system is idling so as to increase chances
of staying in power-down mode for long enough to compensate
performance degradation by energy savings. As self-refresh is a
deeper power-downmode than precharge power-down and activate
power-down, it can take several clock cycles (DDR4 = 408, DDR3 =
512, Wide I/O = 20) to exit from SREF.

3 CONTROLLER POWER STATE MODEL
While the power state machine, the commands and the timings are
dictated by JEDEC standards and device vendors, controller design-
ers implement their own power-state entry and exit control. In this
work we build this control logic on top of the DRAM controller
model in gem5. The controller schedules a sequence to transition
to power-down mode if both conditions are true:

(1) there are no requests in the queue
(2) there are no pending events

SREF

cke=0cke=0 cke=0

Active

PDNA PDNP

P
ow
er

Time

REFA

PRE

SREFEN Internal Refresh

= Scheduled Auto Refresh = Scheduled Self-Refresh

Figure 2: Staggered power-down policy [26]

Examples of pending events are an ongoing refresh operation and
an impending precharge. Our model is event driven as against
cycle callable. We check the aforementioned conditions required to
transition to a power-down state on events such as start of refresh,
end of refresh, respond with data and end of precharge.

As shown in Figure 1, the device can enter PDNA from an Active
state (at least 1 bank has a row open). If the bank is closed and the
device is in IDLE state, and the aforementioned conditions to enter
a power-down state are met then the device can enter PDNP. From
PDNP, on a refresh event the controller has the opportunity to check
the conditions and put the device into the deeper power-down
mode of self-refresh.

A non-optimized highly opportunistic self-refresh entry policy
results in an increased average power, which should be avoided.
This higher power consumption can be explained by the fact that
each self-refresh entry provokes a refresh at the beginning. This
increase in DRAM energy consumption was already measured and
investigated by Schmidt et al. in [41]. They presented the overes-
timation of power savings in the Micron’s power calculator [37]
when using the DRAM self-refresh mode intensively.

Figure 2 shows the Staggered power-down strategy presented
by Jung et al. [26]. After a read or write access the DRAM stays in
Activemode (at least one bank active), in this strategy. However, if
no new transaction is scheduled, the DRAM controller immediately
sets cke to "0" and the DRAM enters active power-down mode
(PDNA). After a certain time a refresh must be issued to the DRAM.
Therefore, the controller has to wake up the DRAM with a power-
down exit command (PDX), send a precharge-all command (PREA)
and finally the refresh command (REFA). The controller switches
to precharge power-down mode (PDNP), due to the previously ex-
ecuted PREA command. If there is still no new read or write re-
quest and the next refresh should be triggered (e.g. 7.8µs later),
the controller schedules a self-refresh entry (SREFEN) instead of a
normal refresh command. This sequence is the key to the additional
savings with staggered power-down policy. The controller uses
the refresh commands as a trigger to enforce the state changes,
PDNA→PDNP→SREF, to minimize the energy consumption of the
DRAM.With this method, unnecessary SREF entries will be avoided,
and the hardware timeout counters, as used in state-of-the-art con-
trollers, are not required.

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA Radhika Jagtap, Matthias Jung et al.

Table 1: Power and timing parameters based on the Micron
DDR4-2400 8 Gbit datasheet[35]

Current Description Value in mA
IDD0 Active precharge current 43
IPP0 Active precharge current for VPP 3
IDD2N Precharge standby current 34
IDD3N Active standby current 38
IPP3N Active standby current for VPP 3
IDD2P Precharge powerdown fast 25
IDD3P Active powerdown fast 32
IDD5 Refresh current 250
IDD6 Self-refresh current 304
IDD4R READ current 110
IDD4W WRITE current 103
Voltage Description Value in V
VDD Main power supply voltage 1.2
VPP Activation power supply voltage 2.5
Timing Description Value in ns
tCK DRAM clock period 0.833
tCCD Column to column delay 3.332
tRP Precharge to subsequent activate 14.160
tRAS Min. time between an activate 32.000

and precharge to the same row

4 BEHAVIOURAL VALIDATION
We validate the behaviour of the DRAM controller using synthetic
traffic as this provides a fine-grained control of the memory access
pattern.

To trigger power-down mode transitions, the main parameter
we need to manipulate is the inter-request or Inter-Transaction Time
(ITT). As we increase ITT, the bus utilization and the occupancy
of the controller’s request queue reduces. At events such as the
refresh event, if there are no outstanding read or write requests in
the controller’s queue, there is an opportunity to transition into a
low power mode after refresh is complete [26]. In this way, as ITT
increases the time spent in power-down modes increases.

For 100% bus utilization, the ITT must be equal to the time to the
column to column delay tCCD . Therefore we set the minimum value
of ITT ITTmin to tCCD . After an ACT command is serviced and the
row is precharged, the time between this ACT command and the
earliest opportunity to transition to a power-down state is: tPDE =
tRAS+tRP+tCK . We use this time to power-downmode entry, tPDE ,
as a time unit to tune the value of ITT. During a phase, the traffic
generator selects a random value between ITTmin and a specified
maximum value of ITT, termed ITTmax , as the delay between back-
to-back requests. For each phase, we also configure a target bank
utilization. For example by setting target utilization to 8/16, request
addresses are generated for banks 0-7 only. Finally, we set the
number of bytes sequentially accessed (NSeqBytes) by a traffic
generator request. In summary, we sweep a few parameters to tune
the likelihood to entering power-down mode and the parameter
combinations result in many traffic generation phases.

4In Table 1, IDD6 is chosen for the temperature range 0-85 C

Table 2: Traffic generation parameters

Memory configurations - total 4 simulations
no. of ranks 1, 2
page policy open adaptive, closed adaptive
Traffic parameters in each memory configuration
request type read (always)
request size 64 B
address range 0 to 256 MB
address map RoRaBaCoCh
ITTmin tCCD
ITTmax tPDE , 20x tPDE , 100x tPDE
NSeqBytes 64, 256, 512
bank utilisation 1/16, 8/16, 16/16

4.1 Experimental Setup
The system we simulate in gem5 consists of a single traffic genera-
tor and a system bus that connects it to a DRAM controller. The
simulated DDR4 DIMM (×64) consists of 16 chips each having a
4-bit interface (×4), with timings based on the Micron DDR4-2400
8 Gbit datasheet (Micron MT40A2G4) [35] connected to the con-
troller via a single DDR4-2400 x64 channel. The key current values,
based on the same datasheet, are shown in Table 1. These are used
by the DRAMPower tool [6] integrated in gem5 to calculate the
energy components. The commands and timestamps are input to
DRAMPower at run time during simulation. The DRAM sub-system
has 16 banks. The buffer containing the incoming requests for all
banks is split into a read and write queue. Requests are re-ordered
by the controller. The scheduling policy for the controller is First
Ready - First Come First Served (FR-FCFS) [39]. With regards to the
page policy, we explore two specializations of the APP described in
Section 2, which are as follows:

• Closed adaptive: the page of a specific bank is closed if
there are no requests to this bank or if there are accesses for
this bank which are not row hits (i.e. there are row misses)

• Open adaptive: the page of a specific bank is closed if there
are no row hits (i.e. there are row misses) but is kept open if
there are no requests to this bank

More information about the controller in gem5 is provided in [14].
We set the number of ranks NRanks to one and two and switch

between the open adaptive and the closed adaptive page policies.
In this way, we explore four memory configurations. We stimulate
each memory configuration with our low-power traffic generation
setup described earlier. The details of the traffic and the memory
configurations are shown in Table 2. We set ITTmax to generate
the following profiles

• Very dense: ITTmax = tPDE
• Dense: ITTmax = 20 · tPDE
• Sparse: ITTmax = 100 · tPDE

Within each density profile, we assign three values each for
NSeqBytes and bank utilization, which gives us a total 27 traffic
generation phases per memory configuration. Each phase is 250
usec long. Next, we discuss the results of the simulation.

Integrating DRAM Power-Down Modes in gem5 andQuantifying their Impact MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
 (
p
s)

 s
p
e
n
t

in
 a

 p
o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
IDLE

ACT

REF

PDNA

PDNP

SREF

(a) Time spent in power states

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n
e
rg
y
 (

p
J)

 o
f

a
 p

o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
ACT-E

PRE-E

READ-E

REF-E

ACT-BACK-E

PRE-BACK-E

PDNA-E

PDNP-E

SREF-E

(b) Energy consumed by power states

Figure 3: NRanks = 1, open adaptive policy, very dense traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
 (
p
s)

 s
p
e
n
t

in
 a

 p
o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
IDLE

ACT

REF

PDNA

PDNP

SREF

(a) Time spent in power states

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n
e
rg
y
 (

p
J)

 o
f

a
 p

o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
ACT-E

PRE-E

READ-E

REF-E

ACT-BACK-E

PRE-BACK-E

PDNA-E

PDNP-E

SREF-E

(b) Energy consumed by power states

Figure 4:NRanks = 1, closed adaptive policy, very dense traffic

4.2 Results for very dense traffic
Figures 3a and 3b show the stack plots for the time spent and the
energy consumed for memory configuration comprising one rank
and the open adaptive page policy. When the number of sequential
bytes accessed NSeqBytes increases, the time spent in PDNA mode
(light grey with dots) increases. The request size of the system is

64B. When the NSeqBytes is set to 64, every new request is to a
random address causing maximum row misses in the DRAM. On
the other hand, when NSeqBytes is set to 256 and 512, the row hit
rate is 3/4 and 7/8 respectively thus resulting in quicker servicing of
the requests and in turn lower queue occupancies. For the 256 and
512 settings the controller’s conditions to transition to power-mode
are satisfied and given the open adaptive page policy we see that
the DRAM goes into PDNA mode.

Figure 3b shows that the active background energy ACT-BACK-E
(in light grey) is the biggest component. For bank utilization 8/16
and 16/16, the energy consumed reduces as NSeqBytes goes from
64B to 512B due to PDNA mode. This trend in energy consumption
does not hold for bank utilization 1/16 due to cold start. In the
first traffic phase, i.e. bank utilization 1/16 and NSeqBytes 64B,
only half as many requests are issued compared to the remaining
8 phases. The controller queue occupancy is nearly always 100%
in the first phase and traffic generator faces severe back pressure.
This explains the lower energy consumption for the first phase.
The refresh energy is constant as the number of refresh commands
issued in each phase is constant.

Figures 4a and 4b show the time and energy stack plots for the
closed adaptive page policy. As NSeqBytes goes from 64B to 512B,
there is negligible time spent in power downmode in contrast to Fig-
ure 3a. The difference is that in closed adaptive policy, a precharge
event is scheduled to close the page if there are no row hits in the
queue. The controller prioritizes this precharge event over a PDNA
transition. The number of times the controller detected no queued
requests and one outstanding event was about 50 times that of
the open adaptive page policy. Of these, in 90% of the cases the
outstanding event was a precharge event. As expected, comparing
the energy data with the open adaptive policy, active power-down
energy (PDNA-E in light grey with dots) is traded for precharge
and background precharge energy (PRE-E with hatch pattern and
PRE-BACK-E in dark grey), thus resulting in higher total energy for
closed adaptive policy.

4.3 Results for dense and sparse traffic
We discuss the data for two ranks instead of one as it shows more
variation across the page policies and more time is spent in SREF
compared to the simulation with one rank. The time spent in differ-
ent states and the energy consumed are shown in Figures 5 and 6.
The total energy consumed for dense and sparse traffic scenarios is
in the range of 1.7 to 2.0 (Figure 6) which is significantly smaller
than the range 2.5 to 3.0 pJ observed for very dense traffic for two
ranks (not shown in figures). In case of both open adaptive and
closed adaptive page policies, the total energy savings achieved
when going from dense to sparse traffic are in the range of 5% to
15%.

For sparse traffic for the open adaptive page policy (Figure 6a),
when the energy for self-refresh increases (SREF-E in white with
dots) the energy for refresh reduces (REF-E in black). This validates
the staggered power-down strategy implemented in the power
state model, which is described in Section 3. For example, for bank
utilization 8/16, self-refresh energy increases and refresh energy
reduces as NSeqBytes increases from 64B to 512B. The activate
background energy (ACT-BACK-E in light grey) is also reduced. For

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA Radhika Jagtap, Matthias Jung et al.

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
 (
p
s)

 s
p
e
n
t

in
 a

 p
o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
IDLE

ACT

REF

PDNA

PDNP

SREF

(a) Open adaptive policy, dense traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
 (
p
s)

 s
p
e
n
t

in
 a

 p
o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
IDLE

ACT

REF

PDNA

PDNP

SREF

(b) Closed adaptive policy, dense traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
 (
p
s)

 s
p
e
n
t

in
 a

 p
o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
IDLE

ACT

REF

PDNA

PDNP

SREF

(c) Open adaptive policy, sparse traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
 (
p
s)

 s
p
e
n
t

in
 a

 p
o
w

e
r

st
a
te

1e8 Bank Util. 1/16

64 25
6

51
2

Seq. bytes

Bank Util. 8/16

64 25
6

51
2

Seq. bytes

Bank Util. 16/16
IDLE

ACT

REF

PDNA

PDNP

SREF

(d) Closed adaptive policy, sparse traffic

Figure 5: Time spent in power states for NRanks = 2

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

E
n
e
rg

y
 (

p
J)

 o
f

a
 p

o
w

e
r

st
a

te

1e8 Bank Util. 1/16

64
256

512

Seq. bytes

Bank Util. 8/16

64
256

512

Seq. bytes

Bank Util. 16/16
ACT-E

PRE-E

READ-E

REF-E

ACT-BACK-E

PRE-BACK-E

PDNA-E

PDNP-E

SREF-E

(a) Open adaptive policy, dense traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

E
n
e
rg

y
 (

p
J)

 o
f

a
 p

o
w

e
r

st
a

te

1e8 Bank Util. 1/16

64
256

512

Seq. bytes

Bank Util. 8/16

64
256

512

Seq. bytes

Bank Util. 16/16
ACT-E

PRE-E

READ-E

REF-E

ACT-BACK-E

PRE-BACK-E

PDNA-E

PDNP-E

SREF-E

(b) Closed adaptive policy, dense traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

E
n
e
rg

y
 (

p
J)

 o
f

a
 p

o
w

e
r

st
a

te

1e8 Bank Util. 1/16

64
256

512

Seq. bytes

Bank Util. 8/16

64
256

512

Seq. bytes

Bank Util. 16/16
ACT-E

PRE-E

READ-E

REF-E

ACT-BACK-E

PRE-BACK-E

PDNA-E

PDNP-E

SREF-E

(c) Open adaptive policy, sparse traffic

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

E
n
e
rg

y
 (

p
J)

 o
f

a
 p

o
w

e
r

st
a

te

1e8 Bank Util. 1/16

64
256

512

Seq. bytes

Bank Util. 8/16

64
256

512

Seq. bytes

Bank Util. 16/16
ACT-E

PRE-E

READ-E

REF-E

ACT-BACK-E

PRE-BACK-E

PDNA-E

PDNP-E

SREF-E

(d) Closed adaptive policy, sparse traffic

Figure 6: Energy consumed by power states for NRanks = 2

the closed adaptive page policy and dense traffic (Figure 5b), the
time spent in ACT is constant as NSeqBytes increases because if
there are no queued requests the page is closed and therefore for
each new request the bank needs to be activated. On the other
hand, for the same traffic profile and open page policy (Figure 5a)
we see a slight decrease in the activate time because if there are no

queued requests the page is kept open and there are row hits when
NSeqBytes is 256 and 512.

Thus by tuning sparseness of requests, we validate the model re-
garding time spent in different power states by analyzing across row
hit behaviour, bank utilization and page policies. The corresponding
energy components are also in line with the current values used.

Integrating DRAM Power-Down Modes in gem5 andQuantifying their Impact MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

5 EVALUATIONWITH HPC APPLICATIONS
Having validated the behaviour of the new power-down functional-
ity added to the DRAM controller in gem5, we evaluate the model
for realistic workload.

5.1 Applications
We use the following proxy applications from the High Performance
Compute (HPC) domain.

(1) HPCG stands for High Performance Conjugate Gradient
and represents computational and data access patterns that
match a broad set of HPC applications, including sparse
matrix-vectormultiplication andGauss-Seidel smoother among
others [10].

(2) FFT measures the floating point rate of execution of double
precision complex one-dimensional Discrete Fourier Trans-
form. [43]

(3) Pathfinder is a signature search algorithm in which is a
modified depth-first recursive search wherein adjacent nodes
are compared before recursing down its edges for labels [9].

(4) GUPS stands for Giga Updates Per Second and measures the
rate of integer random updates of memory [31].

(5) DGEMM measures the floating point rate of execution of
double precision real matrix-matrix multiplication [31].

(6) Linpack consists of an algorithm that solves a (random)
dense linear system in double precision arithmetic [38].

5.2 Experimental Setup
We use the Elastic Traces methodology which models traffic from
an out-of-order processor with reasonable timing accuracy. The ad-
vantage of elastic trace replay is faster simulation speed compared
to typical execution-based cycle-level processor model [19]. We
generate single-core traces for the region of interest for the afore-
mentioned applications. FFT and GUPS are traced for 200 and 100
million instructions respectively. All other applications are traced
for 1 billion instructions.

The DRAM memory sub-system configuration is 2 ranks and
open adaptive page policy with the same timing and power pa-
rameters as in Section 4. The un-core part of the system includes a
two-level cache hierarchy and a crossbar as the system interconnect.
We perform two simulations - one with the power-down function-
ality we added to the DRAM controller model and one without. By
comparing the execution time and energy consumption for the two
models we can analyze the trade-offs.

5.3 Results

% of total energy
HPCG FFT Pathfinder GUPS DGEMM Linpack

PDNA 42% 28% 51% 38% 27% 27%
PDNP 3% 8% 3% 0% 5% 7%
SREF 4% 14% 0% 0% 28% 23%
Total 49% 50% 54% 38% 60% 57%

Table 3: Energy in low power modes PDNA, PDNP and SREF as
a percentage of total energy across all applications.

HPCG FFT Pathfinder GUPS DGEMM Linpack
HPC proxy applications

0.0

0.5

1.0

1.5

2.0

2.5

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

8%

3%

7%

3%

6%

5%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

E
n
e
rg

y
 (

m
J)

-9%

-13%

-11%

-10%

-14%

-14%

Time w/o low power

Time w/ low power

Energy w/o low power

Energy w/ low power

Figure 7: Execution time and energy of DDR4-2400 with and
without power-down functionality.

Figure 7 shows the execution time and total energy consumed
with and without the power-down functionality in the DRAM con-
troller. The labels on the grey bars represent the percentage differ-
ence. The energy consumption reduces by 9%-14% while the execu-
tion time increases by 3%-8%. The impact of power-down modes
on energy is in line with the staggered power-down results [26].

Table 3 shows the percentage of energy consumed in low power
modes PDNA, PDNP and SREF with respect to the total energy for
all applications. The applications FFT, DGEMM and Linpack are
compute intensive with well behaved memory access patterns
which means long periods of no DRAM activity. Therefore, for
FFT, DGEMM and Linpack, we see higher percentages of energy
consumed by low power modes (50%, 60% and 57% respectively).
In Figure 7, these applications show the least execution time in-
crease due to power-downmodes (3%, 6% and 5%) and the maximum
savings in energy (13%, 14% and 14%).

HPCG and Pathfinder have a bursty memory behaviour and see
very little savings coming from PDNP and SREF. Finally, GUPS is a
synthetic benchmark designed to stress the DRAM with random
memory accesses. As expected, there is no energy consumed by
PDNP and SREF and 38% energy consumed by PDNA.

While an HPC system would have many cores, using one core
lets us better correlate the access patterns of the workload to ex-
pected low power behavior. Future work includes analysis on larger
systems for HPC as well as extending to other applications like
mobile and server workloads. The above results illustrate how the
newly added low power functionality can enable the research com-
munity to perform DRAM energy efficiency studies for a breadth
of systems using gem5 - an open-source and publicly available
simulator.

6 RELATEDWORK
We now cover the related work in this area of research, which falls
into two categories.

6.1 DRAM Power-Down
In existing power-down techniques for DDR DRAMs, the mem-
ory controller monitors the current memory traffic and predicts
when to power down and into which power-down state. Due to a

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA Radhika Jagtap, Matthias Jung et al.

limited buffer depth, the memory controller has only a local view
on the executed application [22]. Therefore, the full advantages
of the power-down states implemented in modern DRAMs can-
not be exploited efficiently because the memory controller lacks
information with respect to the application’s memory access be-
havior. Moreover, the idle periods between two consecutive mem-
ory accesses are often too short to exploit, e.g., the full potential
of self-refresh [15]. Therefore, memory controllers usually issue
power-down commands after configurable timeouts [12, 30]. Thus,
the authors of [15] propose a technique that actively reshapes the
memory traffic in order to merge short idle periods, which were pre-
viously too short for effective power-down management. Like this,
they can effectively exploit the idleness in the DRAM. Fan et al. [12]
discovered that the DRAM should be immediately transitioning to
a lower power state when it becomes idle.

In a comprehensive approach, Hur et al. [16] use the memory
scheduler to improve the usage of the power-down modes and to
throttle DRAM activity based on predicted delays caused by the
throttling while still keeping the performance sufficiently high.
In [2] memory pages are loaded only to few memory DIMMs, while
the the rest of the DIMMs are switched to self-refresh. In [8], com-
piler techniques are presented, which exploit the DRAM power-
down states. Chandrasekar et al. [5] present two power-down strate-
gies that reduce memory energy consumption while still preserv-
ing the guaranteed bandwidth provided by real-time memory con-
trollers. Furthermore, they present an algorithm to select the most
energy-efficient power-down mode at run-time. In [44], a history-
based predictor is used in order to forecast the duration of an idle pe-
riod. According to the forecast, either the self-refresh mode, normal
power-down or a combination of both is selected. However, such a
predictor implies significant hardware overhead in the front-end of
the memory controller. The authors of [32] present a post-DDR4
DRAM architecture that is capable of fast wake-up while ensuring
high bandwidth. Jung et al. present a technique called Staggered
Power-Down [26]. This approach does neither require changes to
the DRAM architecture, nor sophisticated predictors in the mem-
ory controller. Their approach uses the internal refresh timer for
the transition of the power-down states. Thus, dedicated hardware
timeout counters, as used in state-of-the-art controllers, are not
required anymore. Thus this work uses the Staggered Power-Down
approach.

6.2 DRAM- and Power-Down Simulation
Many MPSoC simulators use detailed cache and interconnect mod-
els, but assume a simplistic Fixed-Latency memory model [17]. In
the fixed latency model, all memory requests experience the same
latency. Queueing, scheduling, or reordering of memory requests in
the memory controller is not modelled. Thus, always the maximum
memory bandwidth is considered, which is completely unrealistic
since the latency of a DRAM access varies between a dozen and
several hundred cycles.

When it comes to high-level simulations of DRAM subsystems,
several DRAM simulators exists [7, 20, 28, 40]. Each of them is
focusing on different aspects like, e.g., scheduling, subsystem ar-
chitecture etc., and each has individual advantages and drawbacks.
They either do not implement a power-down functionality, do not

implement it truthfully or completely, or if so they are not main-
tained anymore with respect to today’s DRAM standards. Moreover,
they all are cycle accurate simulators that slow down event-driven
full-system simulations, because every cycle has to be simulated.
As mentioned before, since DRAMs contribute significantly to the
power consumption of today’s systems, there is a need for accu-
rate power modelling. A well-known and often used DRAM power
model is provided by Micron in form of a spreadsheet [37]. A more
accurate model is DRAMPower, by Chandrasekar et al. [6], which
uses the actual timings from stimuli generated by a functional
DRAM simulator. Moreover, DRAMPower provides the possibility
to estimate the power consumption of the DRAM power-down
modes.

Jung et al. presented DRAMSys [24, 25], a SystemC/TLM based
DRAM subsystem design space exploration framework featuring
functional, power and thermal modeling (based on DRAMPower
and 3D-ICE [42]), a detailed power-down model [26], as well as a
sophisticated retention error model [45]. However, at present this
tool is not publicly available.

gem5 [3], a full-system simulator has integrated a realistic DRAM
controller model [14]. This is very similar to the one implemented in
DRAMsys and also uses the DRAMPower library [6]. Furthermore,
gem5 features elastic traces [19] which enable fast and reasonably
accurate memory subsystem design space exploration.

Prior to our work the integration of DRAM power-down modes
was missing in gem5. However, as part of publishing this paper
we contributed the DRAM power-down functionality to the gem5
simulator. Due to our code contribution, and the validation shown in
Sections 4 and 5, we provide the research community with a publicly
available full-system simulator for energy efficiency studies.

7 CONCLUSION
DRAM is a significant contributor to the total energy in systems
from smartphones to servers. DRAM technology incorporates power-
down modes which enable architects to design power-down strate-
gies when there is no memory activity and thus improve the en-
ergy efficiency of these systems. From existing publicly available
simulators, there is none that includes a fully functional DRAM
sub-system, a sophisticated controller, power-down modes, an inte-
grated power calculation tool and is able simulate complete SoCs
with real workloads (see Section 6).

In the context of this paper, we describe the power-down func-
tionality that we contributed to the publicly available and open
source full-system simulator gem5 [3], which already had a con-
troller and integrated power calculation tool. We describe the power
state machine (see Section 3) and validate the newly added func-
tionality systematically by using synthetic traffic designed to put
the device in power-down modes for varying amounts of time. We
analyze the behaviours across open adaptive and closed adaptive
page policies as well as for increasing bank utilization and row hits
(see Section 4). In addition, we evaluate the model using real work-
loads belonging to the HPC domain (see Section 5) to show that the
value of our contribution is in enabling the research community to
perform energy efficiency studies for a range of problems using a
full-system simulator.

Integrating DRAM Power-Down Modes in gem5 andQuantifying their Impact MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA

ACKNOWLEDGMENTS
This work was partially funded by the German Research Founda-
tion (DFG) grant no. WE2442/10-1 (http://www.uni-kl.de/3d-dram)
and supported by the the Fraunhofer High Performance Center for
Simulation- and Software-based Innovation. The project OPRECOMP
acknowledges the financial support of the Future and Emerging
Technologies (FET) programme within the European Unions Hori-
zon 2020 research and innovation programme, under grant agree-
ment No.732631 (http://www.oprecomp.eu)

The authors thank Omar Naji for the initial basic model of power-
down modes. The authors are also grateful to Stephan Diestelhorst,
Andreas Sandberg and Nikos Nikoleris for their valuable feedback
on the writing and the code contributed to gem5.

REFERENCES
[1] Sara Alspaugh, Arka Bhattacharya, David Culler, and Randy Katz. 2011. The Tao

of Systems: Doing Nothing Well.
[2] Raid Zuhair Ayoub, Krishnam Raju Indukuri, and Tajana Simunic Rosing. 2010.

Energy Efficient Proactive Thermal Management in Memory Subsystem. In
Proceedings of the 16th ACM/IEEE International Symposium on Low Power Elec-
tronics and Design (ISLPED ’10). ACM, New York, NY, USA, 195–200. https:
//doi.org/10.1145/1840845.1840884

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[4] Aaron Carroll and Gernot Heiser. 2013. The Systems Hacker’s Guide to the
Galaxy Energy Usage in a Modern Smartphone. In Proceedings of the 4th Asia-
Pacific Workshop on Systems (APSys ’13). ACM, New York, NY, USA, Article 5,
7 pages. https://doi.org/10.1145/2500727.2500734

[5] Karthik Chandrasekar, Benny Akesson, and Kees Goossens. 2012. Run-time
Power-down Strategies for Real-time SDRAMMemory Controllers. In Proceedings
of the 49th Annual Design Automation Conference (DAC ’12). ACM, New York, NY,
USA, 988–993. https://doi.org/10.1145/2228360.2228538

[6] Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson, Omar Naji,
Matthias Jung, Norbert Wehn, and Kees Goossens. [n. d.]. DRAMPower: Open-
source DRAM power & energy estimation tool. http://www.drampower.info. ([n.
d.]).

[7] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth Pugs-
ley, Aniruddha Udipi, Ali Shafiee, Manu Sudan, Kshitij amd Awasthi, and Zeshan
Chishti. 2012. USIMM: the Utah SImulated Memory Module, A Simulation In-
frastructure for the JWAC Memory Scheduling Championship. Utah and Intel
Corp. (February 2012).

[8] Victor Delaluz, Mahmut Kandemir, N. Vijaykrishnan, Anand Sivasubramaniam,
and Mary Jane Irwin. 2001. Hardware and Software Techniques for Controlling
DRAM Power Modes. IEEE Trans. Comput. 50, 11 (Nov. 2001), 1154–1173. https:
//doi.org/10.1109/12.966492

[9] Aditya M. Deshpande, Jeffrey T. Draper, J. Brian Rigdon, and Richard F. Barrett.
2015. PathFinder: A Signature-search Miniapp and Its Runtime Characteristics.
In Proceedings of the 5th Workshop on Irregular Applications: Architectures and
Algorithms (IA3 ’15). ACM, New York, NY, USA, Article 9, 4 pages. https://doi.
org/10.1145/2833179.2833190

[10] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. 2016. A new metric
for ranking high-performance computing systems. National Science Review 3, 1
(2016), 30. https://doi.org/10.1093/nsr/nwv084

[11] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,
Ramesh Govindan, and Deborah Estrin. 2010. Diversity in Smartphone Usage. In
Proceedings of the 8th International Conference on Mobile Systems, Applications,
and Services (MobiSys ’10). ACM, New York, NY, USA, 179–194. https://doi.org/
10.1145/1814433.1814453

[12] Xiaobo Fan, Carla Ellis, and Alvin Lebeck. 2001. Memory Controller Policies for
DRAM Power Management. In Proceedings of the 2001 International Symposium
on Low Power Electronics and Design (ISLPED ’01). ACM, New York, NY, USA,
129–134. https://doi.org/10.1145/383082.383118

[13] N. Farahini, A. Hemani, A. Lansner, F. Clermidy, and C. Svensson. 2014. A
scalable custom simulation machine for the Bayesian Confidence Propagation
Neural Network model of the brain. In Design Automation Conference (ASP-DAC),
2014 19th Asia and South Pacific. 578–585. https://doi.org/10.1109/ASPDAC.2014.
6742953

[14] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A.N. Udipi. 2014. Simulating
DRAM controllers for future system architecture exploration. In Performance

Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on.
201–210. https://doi.org/10.1109/ISPASS.2014.6844484

[15] Hai Huang, Kang G. Shin, Charles Lefurgy, Tom Keller, Krishna T. Malladi, Ian
Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C. Lee, and Mark Horowitz.
2005. Improving Energy Efficiency by Making DRAM Less Randomly Accessed.
In Proceedings of the 2005 International Symposium on Low Power Electronics and
Design (ISLPED ’05). ACM, New York, NY, USA, 393–398. https://doi.org/10.1145/
1077603.1077696

[16] I. Hur and C. Lin. 2008. A comprehensive approach to DRAM power manage-
ment. In 2008 IEEE 14th International Symposium on High Performance Computer
Architecture. 305–316. https://doi.org/10.1109/HPCA.2008.4658648

[17] Bruce Jacob. 2009. The Memory System: You Can’T Avoid It, You Can’T Ignore It,
You Can’T Fake It. Morgan and Claypool Publishers.

[18] B. Jacob, S. Ng, and D. Wang. 2010. Memory Systems: Cache, DRAM, Disk. Elsevier
Science.

[19] Radhika Jagtap, Stephan Diestelhorst, Andreas Hansson, Matthias Jung, and
Norbert Wehn. 2016. Exploring System Performance using Elastic Traces: Fast,
Accurate and Portable. In IEEE International Conference on Embedded Computer
Systems Architectures Modeling and Simulation (SAMOS), July, 2016, Samos Island,
Greece.

[20] Min Kyu Jeong, Doe Hyun Yoon, and Mattan Erez. [n. d.]. DrSim: A Platform
for Flexible DRAM System Research. http://lph.ece.utexas.edu/public/DrSim. ([n.
d.]).

[21] Matthias Jung. 2017. System-Level Modeling, Analysis and Optimization of DRAM
Memories and Controller Architectures. Ph.D. Dissertation. University of Kaiser-
slautern.

[22] Matthias Jung, Irene Heinrich, Marco Natale, Deepak M. Mathew, Christian Weis,
Sven Krumke, and Norbert Wehn. 2016. ConGen: An Application Specific DRAM
Memory Controller Generator. In International Symposium on Memory Systems
(MEMSYS 2016).

[23] Matthias Jung, Kira Kraft, and Norbert Wehn. 2017. A New State Model for
DRAMs Using Petri Nets. In IEEE International Conference on Embedded Computer
Systems Architectures Modeling and Simulation (SAMOS).

[24] Matthias Jung, Christian Weis, and Norbert Wehn. 2015. DRAMSys: A flexible
DRAM Subsystem Design Space Exploration Framework. IPSJ Transactions on
System LSI Design Methodology (T-SLDM) (August 2015).

[25] Matthias Jung, Christian Weis, Norbert Wehn, and Karthik Chandrasekar. 2013.
TLM modelling of 3D stacked wide I/O DRAM subsystems: a virtual platform for
memory controller design space exploration. In Proceedings of the 2013 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO ’13).
ACM, New York, NY, USA, Article 5, 6 pages. https://doi.org/10.1145/2432516.
2432521

[26] M. Jung, C. Weis, N. Wehn, M. Sadri, and L. Benini. 2014. Optimized active and
power-down mode refresh control in 3D-DRAMs. In Very Large Scale Integration
(VLSI-SoC), 2014 22nd International Conference on. 1–6. https://doi.org/10.1109/
VLSI-SoC.2014.7004159

[27] Gokcen Kestor, Roberto Gioiosa, and Adolfy Kerbyson, Darren J.and Hoisie. 2013.
Quantifying the energy cost of data movement in scientific applications. In Pro-
ceedings of the 2013 IEEE International Symposium on Workload Characterization
(IISCW 2013). IEEE. https://doi.org/10.1109/IISWC.2013.6704670

[28] Y. Kim, W. Yang, and O. Mutlu. 2015. Ramulator: A Fast and Extensible DRAM
Simulator. IEEE Computer Architecture Letters PP, 99 (2015), 1–1. https://doi.org/
10.1109/LCA.2015.2414456

[29] J. Krueger, D. Donofrio, J. Shalf, M. Mohiyuddin, S. Williams, L. Oliker, and
F.-J. Pfreundt. 2011. Hardware/software co-design for energy-efficient seismic
modeling. In High Performance Computing, Networking, Storage and Analysis (SC),
2011 International Conference for. 1–12.

[30] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. 2000. Power Aware Page
Allocation. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS IX). ACM,
New York, NY, USA, 105–116. https://doi.org/10.1145/378993.379007

[31] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F
Lucas, Rolf Rabenseifner, and Daisuke Takahashi. 2006. The HPC Challenge
(HPCC) Benchmark Suite. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC ’06). ACM, New York, NY, USA, Article 213. https://doi.org/
10.1145/1188455.1188677

[32] Krishna T. Malladi, Ian Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C.
Lee, and Mark Horowitz. 2012. Rethinking DRAM Power Modes for Energy
Proportionality. In MICRO.

[33] Jedec Solid State Technology Association. 2012. DDR3 SDRAM (JESD 79-3).
(2012).

[34] JEDEC Solid State Technology Association. 2015. High Bandwidth Memory
(HBM) DRAM. JEDEC Standard JESD235A (2015).

[35] Micron Technology, Inc. 2016. DDR4 SDRAM - MT40A2G4. (2016). https://www.
micron.com/products/dram/ddr4-sdram/8Gb#/

[36] David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2009. PowerNap: Eliminat-
ing Server Idle Power. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS XIV).

MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA Radhika Jagtap, Matthias Jung et al.

ACM, New York, NY, USA, 205–216. https://doi.org/10.1145/1508244.1508269
[37] Micron. 2011. DDR3 SDRAM System Power Calculator,. last access 2014-07-03.

(jul 2011). http://www.micron.com/products/support/power-calc
[38] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. 2016. HPL - A Portable

Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers. (2016). http://www.netlib.org/benchmark/hpl/

[39] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens.
2000. Memory Access Scheduling. In Proceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA ’00). ACM, New York, NY, USA,
128–138. https://doi.org/10.1145/339647.339668

[40] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate
Memory System Simulator. Computer Architecture Letters 10, 1 (Jan 2011), 16–19.
https://doi.org/10.1109/L-CA.2011.4

[41] Daniel Schmidt and Norbert Wehn. 2009. DRAM Power Management and Energy
Consumption: a Critical Assessment. In Proceedings of the 22ndAnnual Symposium
on Integrated Circuits and System Design. Natal, Brazil.

[42] A. Sridhar, A. Vincenzi, M. Ruggiero, Thomas Brunschwiler, and D. Atienza. 2010.
3D-ICE: Fast compact transient thermal modeling for 3D ICs with inter-tier liquid
cooling. In Proc. of ICCAD 2010.

[43] Daisuke Takahash. 2014. FFTE: A Fast Fourier Transform Package. (2014).
http://www.ffte.jp/

[44] G. Thomas, K. Chandrasekar, B. Åkesson, B. Juurlink, and K. Goossens. 2012. A
Predictor-Based Power-Saving Policy for DRAM Memories. In 2012 15th Euromi-
cro Conference on Digital System Design. 882–889. https://doi.org/10.1109/DSD.
2012.11

[45] Christian Weis, Matthias Jung, Peter Ehses, Cristiano Santos, Pascal Vivet, Sven
Goossens, Martijn Koedam, and Norbert Wehn. 2015. Retention Time Measure-
ments and Modelling of Bit Error Rates of WIDE I/O DRAM in MPSoCs. In
Proceedings of the IEEE Conference on Design, Automation & Test in Europe (DATE).
European Design and Automation Association.

