746. 使用最小花费爬楼梯

578 篇文章 ¥299.90 ¥399.90
570 篇文章 ¥299.90 ¥399.90
这是一道关于优化路径成本的问题,给定一个包含非负数体力值的数组cost,你需要找到到达楼梯顶部的最低花费。你可以每次爬1级或2级,目标是找到最小总花费。示例展示了如何在不同cost数组中找到最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
 示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
 

提示:

cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        cost.push_back(0);
        for(int i = 2;i<cost.size();i++)
        {
            cost[i]+=min(cost[i-1],cost[i-2]);
        }
        return cost[cost.size()-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值