代码随想录-算法训练营day39【动态规划02:不同路径】

动态规划进阶:解题笔记——LeetCode62/63不同路径与障碍

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客

第九章 动态规划part02

● 62.不同路径 
● 63. 不同路径 II 

今天开始逐渐有 dp的感觉了,题目不多,就两个 不同路径,可以好好研究一下

 详细布置 

 62.不同路径 

本题大家掌握动态规划的方法就可以。 数论方法 有点非主流,很难想到。 

https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html  
视频讲解:https://www.bilibili.com/video/BV1ve4y1x7Eu

 63. 不同路径 II 

https://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.htmlhttps://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.html  
视频讲解:https://www.bilibili.com/video/BV1Ld4y1k7c6 

目录

0062_不同路径

0063_不同路径II


0062_不同路径

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

import java.util.Arrays;

public class _0062_不同路径 {
}

class Solution0062 {//超时
    public int res = 0;

    public int uniquePaths(int m, int n) {
        dfs(m, n, 1, 1);
        return res;
    }

    public void dfs(int m, int n, int i, int j) {
        if (i > m || j > n) {
            return;
        }
        if (i == m && j == n) {
            res++;
        }
        dfs(m, n, i + 1, j);
        dfs(m, n, i, j + 1);
    }
}

class Solution0062_2 {//超时
    public int uniquePaths(int m, int n) {
        return dfs(1, 1, m, n);
    }

    int dfs(int i, int j, int m, int n) {
        if (i > m || j > n)   //越界了
            return 0;
        if (i == m && j == n) //找到一种方法,相当于找到了叶子节点
            return 1;
        return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
    }
}

class Solution0062_3 {
    /**
     * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类
     * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1]
     * 3. 初始化  dp[i][0]=1、dp[0][i]=1,初始化横竖就可
     * 4. 遍历顺序,一行一行遍历
     * 5. 推导结果 。。。。。。。。
     *
     * @param m
     * @param n
     * @return
     */
    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        //初始化
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }

    public int uniquePaths2(int m, int n) {//状态压缩
        //在二维dp数组中,当前值的计算只依赖正上方和正左方,因此可以压缩成一维数组。
        int[] dp = new int[n];
        //初始化,第一行只能从正左方跳过来,所以只有一条路径。
        Arrays.fill(dp, 1);
        for (int i = 1; i < m; i++) {
            //第一列也只有一条路,不用迭代,所以从第二列开始
            for (int j = 1; j < n; j++) {
                dp[j] += dp[j - 1];//dp[j] = dp[j] (正上方)+ dp[j - 1] (正左方)
            }
        }
        return dp[n - 1];
    }

    public long uniquePaths3(int m, int n) {//数论
        long numerator = 1; // 分子
        int denominator = m - 1; // 分母
        int count = m - 1;
        int t = m + n - 2;
        while (count > 0) {
            numerator *= (t--);
            while (denominator != 0 && numerator % denominator == 0) {
                numerator /= denominator;
                denominator--;
            }
            count--;
        }
        return numerator;
    }
}

0063_不同路径II

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class _0063_不同路径II {
}

class Solution0063 {//超时
    public int res = 0;

    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        dfs(obstacleGrid, 0, 0);
        return res;
    }

    private void dfs(int[][] obstacleGrid, int i, int j) {
        if (i >= obstacleGrid.length || j >= obstacleGrid[0].length || obstacleGrid[i][j] == 1) {
            return;
        }
        if (i == obstacleGrid.length - 1 && j == obstacleGrid[0].length - 1) {
            res++;
        }
        dfs(obstacleGrid, i + 1, j);
        dfs(obstacleGrid, i, j + 1);
    }
}

class Solution0063_2 {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];

        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
            return 0;
        }

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
            }
        }
        return dp[m - 1][n - 1];
    }

    //空间优化版本
    public int uniquePathsWithObstacles2(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[] dp = new int[n];

        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (obstacleGrid[i][j] == 1) {
                    dp[j] = 0;
                } else if (j != 0) {
                    dp[j] += dp[j - 1];
                }
            }
        }
        return dp[n - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upward337

谢谢老板~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值