代码随想录-算法训练营day41【动态规划04:01背包问题-滚动数组、分割等和子集】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客

第九章 动态规划part04

● 01背包问题,你该了解这些! 
● 01背包问题,你该了解这些! 滚动数组  
● 416. 分割等和子集 

正式开始背包问题,背包问题还是挺难的,虽然大家可能看了很多背包问题模板代码,感觉挺简单,但基本理解的都不够深入。 

如果是直接从来没听过背包问题,可以先看文字讲解慢慢了解 这是干什么的。

如果做过背包类问题,可以先看视频,很多内容,是自己平时没有考虑到位的。 

背包问题,力扣上没有原题,大家先了解理论,今天就安排一道具体题目。 

 详细布置 

 01背包问题 二维 
https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html  
视频讲解:https://www.bilibili.com/video/BV1cg411g7Y6  

 01背包问题 一维 
https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-2.html  
视频讲解:https://www.bilibili.com/video/BV1BU4y177kY  

 416. 分割等和子集  
本题是 01背包的应用类题目
https://programmercarl.com/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.html    
视频讲解:https://www.bilibili.com/video/BV1rt4y1N7jE

目录

01背包问题,你该了解这些!

01背包问题,你该了解这些!滚动数组

0416_分割等和子集


01背包问题,你该了解这些!

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class BagProblem0001 {
    public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagSize = 4;
        testWeightBagProblem(weight, value, bagSize);
    }

    /**
     * 动态规划获得结果
     *
     * @param weight  物品的重量
     * @param value   物品的价值
     * @param bagSize 背包的容量
     */
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize) {
        //创建dp数组
        int goods = weight.length;  //获取物品的数量
        int[][] dp = new int[goods][bagSize + 1];

        //初始化dp数组
        //创建数组后,其中默认的值就是0
        for (int j = weight[0]; j <= bagSize; j++) {
            dp[0][j] = value[0];
        }

        //填充dp数组
        for (int i = 1; i < weight.length; i++) {
            for (int j = 1; j <= bagSize; j++) {
                if (j < weight[i]) {
                    /**
                     * 当前背包的容量都没有当前物品i大的时候,是不放物品i的
                     * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
                     */
                    dp[i][j] = dp[i - 1][j];
                } else {
                    /**
                     * 当前背包的容量可以放下物品i
                     * 那么此时分两种情况:
                     *   1、不放物品i
                     *   2、放物品i
                     * 比较这两种情况下,哪种背包中物品的最大价值最大
                     */
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
                }
            }
        }

        //打印dp数组
        for (int i = 0; i < goods; i++) {
            for (int j = 0; j <= bagSize; j++) {
                System.out.print(dp[i][j] + "\t");
            }
            System.out.println("\n");
        }
    }
}
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

import java.util.Arrays;

public class BagProblem0002 {
    public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagSize = 4;
        testWeightBagProblem(weight, value, bagSize);
    }

    /**
     * 初始化 dp 数组做了简化(给物品增加冗余维)。这样初始化dp数组,默认全为0即可。
     * dp[i][j] 表示从下标为[0 - i-1]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
     * 其实是模仿背包重量从 0 开始,背包容量 j 为 0 的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为 0。
     * 可选物品也可以从无开始,也就是没有物品可选,即dp[0][j],这样无论背包容量为多少,背包价值总和一定为 0。
     *
     * @param weight  物品的重量
     * @param value   物品的价值
     * @param bagSize 背包的容量
     */
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize) {
        //创建dp数组
        int goods = weight.length;  //获取物品的数量
        int[][] dp = new int[goods + 1][bagSize + 1];  //给物品增加冗余维,i = 0 表示没有物品可选

        //初始化dp数组,默认全为0即可
        //填充dp数组
        for (int i = 1; i <= goods; i++) {
            for (int j = 1; j <= bagSize; j++) {
                if (j < weight[i - 1]) {  // i - 1 对应物品 i
                    /**
                     * 当前背包的容量都没有当前物品i大的时候,是不放物品i的
                     * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
                     */
                    dp[i][j] = dp[i - 1][j];
                } else {
                    /**
                     * 当前背包的容量可以放下物品i
                     * 那么此时分两种情况:
                     *    1、不放物品i
                     *    2、放物品i
                     * 比较这两种情况下,哪种背包中物品的最大价值最大
                     */
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);  // i - 1 对应物品 i
                }
            }
        }

        //打印dp数组
        for (int[] arr : dp) {
            System.out.println(Arrays.toString(arr));
        }
    }
}

01背包问题,你该了解这些!滚动数组

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class BagProblem0003 {
    public static void main(String[] args) {
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWight = 4;
        testWeightBagProblem(weight, value, bagWight);
    }

    public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight) {
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++) {
            for (int j = bagWeight; j >= weight[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++) {
            System.out.print(dp[j] + " ");
        }
    }
}

0416_分割等和子集

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class _0416_分割等和子集 {
}

class Solution0416 {
    public boolean canPartition(int[] nums) {
        if (nums == null || nums.length == 0) return false;
        int n = nums.length;
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        //总和为奇数,不能平分
        if (sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for (int i = 0; i < n; i++) {
            for (int j = target; j >= nums[i]; j--) {
                //物品 i 的重量是 nums[i],其价值也是 nums[i]
                dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
            }
            //剪枝一下,每一次完成內層的for-loop,立即檢查是否dp[target] == target,優化時間複雜度(26ms -> 20ms)
            if (dp[target] == target)
                return true;
        }
        return dp[target] == target;
    }
}

class Solution0416_2 {
    public static void main(String[] args) {
        int num[] = {1, 5, 11, 5};
        canPartition(num);
    }

    public static boolean canPartition(int[] nums) {
        int len = nums.length;
        //题目已经说非空数组,可以不做非空判断
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        //特判:如果是奇数,就不符合要求
        if ((sum % 2) != 0) {
            return false;
        }

        int target = sum / 2; //目标背包容量
        //创建二维状态数组,行:物品索引,列:容量(包括 0)
        /*
        dp[i][j]表示从数组的 [0, i] 这个子区间内挑选一些正整数
          每个数只能用一次,使得这些数的和恰好等于 j。
        */
        boolean[][] dp = new boolean[len][target + 1];

        //先填表格第 0 行,第 1 个数只能让容积为它自己的背包恰好装满(这里的dp[][]数组的含义就是“恰好”,所以就算容积比它大的也不要)
        if (nums[0] <= target) {
            dp[0][nums[0]] = true;
        }
        //再填表格后面几行
        //外层遍历物品
        for (int i = 1; i < len; i++) {
            //内层遍历背包
            for (int j = 0; j <= target; j++) {
                //直接从上一行先把结果抄下来,然后再修正
                dp[i][j] = dp[i - 1][j];

                //如果某个物品单独的重量恰好就等于背包的重量,那么也是满足dp数组的定义的
                if (nums[i] == j) {
                    dp[i][j] = true;
                    continue;
                }
                //如果某个物品的重量小于j,那就可以看该物品是否放入背包
                //dp[i - 1][j]表示该物品不放入背包,如果在 [0, i - 1] 这个子区间内已经有一部分元素,使得它们的和为 j ,那么 dp[i][j] = true;
                //dp[i - 1][j - nums[i]]表示该物品放入背包。如果在 [0, i - 1] 这个子区间内就得找到一部分元素,使得它们的和为 j - nums[i]。
                if (nums[i] < j) {
                    dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]];
                }
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j <= target; j++) {
                System.out.print(dp[i][j] + " ");
            }
            System.out.println();
        }
        return dp[len - 1][target];
    }
    /**
     * //dp数组的打印结果
     * false true false false false false false false false false false false
     * false true false false false true true false false false false false
     * false true false false false true true false false false false true
     * false true false false false true true false false false true true
     */
}

class Solution0416_3 {
    public boolean canPartition(int[] nums) {
        //using 2-D DP array.
        int len = nums.length;
        //check edge cases;
        if (len == 0)
            return false;

        int sum = 0;
        for (int num : nums)
            sum += num;
        //we only deal with even numbers. If sum is odd, return false;
        if (sum % 2 == 1)
            return false;

        int target = sum / 2;
        int[][] dp = new int[nums.length][target + 1];

        // for(int j = 0; j <= target; j++){
        //     if(j < nums[0])
        //         dp[0][j] = 0;
        //     else
        //         dp[0][j] = nums[0];
        // }

        //initialize dp array
        for (int j = nums[0]; j <= target; j++) {
            dp[0][j] = nums[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 0; j <= target; j++) {
                if (j < nums[i])
                    dp[i][j] = dp[i - 1][j];
                else
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
            }
        }

        //print out DP array
        // for(int x : dp){
        //     System.out.print(x + ",");
        // }
        // System.out.print("    "+i+" row"+"\n");
        return dp[len - 1][target] == target;
    }
    /**
     * //dp数组的打印结果 for test case 1.
     * 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
     * 0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 6, 6,
     * 0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 6, 11,
     * 0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 10, 11,
     */
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upward337

谢谢老板~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值