第九章 动态规划part11
● 123.买卖股票的最佳时机III
● 188.买卖股票的最佳时机IV
详细布置
123.买卖股票的最佳时机III
这道题一下子就难度上来了,关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
视频讲解:https://www.bilibili.com/video/BV1WG411K7AR
https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIII.html
188.买卖股票的最佳时机IV
本题是123.买卖股票的最佳时机III 的进阶版
视频讲解:https://www.bilibili.com/video/BV16M411U7XJ
https://programmercarl.com/0188.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAIV.html
目录
0123_买卖股票的最佳时机III
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;
public class _0123_买卖股票的最佳时机III {
}
class Solution0123 {//版本一
public int maxProfit(int[] prices) {
int len = prices.length;
//边界判断, 题目中 length >= 1, 所以可省去
if (prices.length == 0) return 0;
/*
* 定义 5 种状态:
* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
*/
int[][] dp = new int[len][5];
dp[0][1] = -prices[0];
//初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润
dp[0][3] = -prices[0];
for (int i = 1; i < len; i++) {
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[len - 1][4];
}
}
class Solution0123_2 {//版本二: 空间优化
public int maxProfit(int[] prices) {
int[] dp = new int[4];
//存储两次交易的状态就行了
//dp[0]代表第一次交易的买入
dp[0] = -prices[0];
//dp[1]代表第一次交易的卖出
dp[1] = 0;
//dp[2]代表第二次交易的买入
dp[2] = -prices[0];
//dp[3]代表第二次交易的卖出
dp[3] = 0;
for (int i = 1; i <= prices.length; i++) {
//要么保持不变,要么没有就买,有了就卖
dp[0] = Math.max(dp[0], -prices[i - 1]);
dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
//这已经是第二次交易了,所以得加上前一次交易卖出去的收获
dp[2] = Math.max(dp[2], dp[1] - prices[i - 1]);
dp[3] = Math.max(dp[3], dp[2] + prices[i - 1]);
}
return dp[3];
}
}
0188_买卖股票的最佳时机IV
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;
public class _0188_买卖股票的最佳时机IV {
}
//版本一: 三维 dp数组
class Solution0188 {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) return 0;
//[天数][交易次数][是否持有股票]
int len = prices.length;
int[][][] dp = new int[len][k + 1][2];
//dp数组初始化
//初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润
for (int i = 0; i <= k; i++) {
dp[0][i][1] = -prices[0];
}
for (int i = 1; i < len; i++) {
for (int j = 1; j <= k; j++) {
//dp方程, 0表示不持有/卖出, 1表示持有/买入
dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
}
}
return dp[len - 1][k][0];
}
}
//版本二: 二维dp数组
class Solution0188_2 {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) return 0;
//[天数][股票状态]
//股票状态: 奇数表示第 k 次交易持有/买入,偶数表示第 k 次交易不持有/卖出,0 表示没有操作
int len = prices.length;
int[][] dp = new int[len][k * 2 + 1];
//dp数组的初始化, 与版本一同理
for (int i = 1; i < k * 2; i += 2) {
dp[0][i] = -prices[0];
}
for (int i = 1; i < len; i++) {
for (int j = 0; j < k * 2 - 1; j += 2) {
dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[len - 1][k * 2];
}
}
//版本三:一维 dp数组 (下面有和卡哥逻辑一致的一维数组Java解法)
class Solution0188_3 {
public int maxProfit(int k, int[] prices) {
if (prices.length == 0) {
return 0;
}
if (k == 0) {
return 0;
}
//其实就是123题的扩展,123题只用记录2次交易的状态
//这里记录k次交易的状态就行了
//每次交易都有买入,卖出两个状态,所以要乘 2
int[] dp = new int[2 * k];
//按123题解题格式那样,做一个初始化
for (int i = 0; i < dp.length / 2; i++) {
dp[i * 2] = -prices[0];
}
for (int i = 1; i <= prices.length; i++) {
dp[0] = Math.max(dp[0], -prices[i - 1]);
dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
//还是与123题一样,与123题对照来看,就很容易啦
for (int j = 2; j < dp.length; j += 2) {
dp[j] = Math.max(dp[j], dp[j - 1] - prices[i - 1]);
dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]);
}
}
//返回最后一次交易卖出状态的结果就行了
return dp[dp.length - 1];
}
}