第九章 动态规划part15
● 392.判断子序列
● 115.不同的子序列
详细布置
392.判断子序列
这道题目算是 编辑距离问题 的入门题目(毕竟这里只是涉及到减法),慢慢的,后面就要来解决真正的 编辑距离问题了
https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html
115.不同的子序列
但相对于刚讲过 392.判断子序列,本题 就有难度了 ,感受一下本题和 392.判断子序列 的区别。
https://programmercarl.com/0115.%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%90%E5%BA%8F%E5%88%97.html
目录
0392_判断子序列
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;
import java.util.Arrays;
public class _0392_判断子序列 {
}
class Solution0392 {
public boolean isSubsequence(String s, String t) {
int length1 = s.length();
int length2 = t.length();
int[][] dp = new int[length1 + 1][length2 + 1];
for (int i = 1; i <= length1; i++) {
for (int j = 1; j <= length2; j++) {
if (s.charAt(i - 1) == t.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
if (dp[length1][length2] == length1) {
return true;
} else {
return false;
}
}
}
class Solution0392_2 {
//修改遍历顺序后,可以利用滚动数组,对dp数组进行压缩
public boolean isSubsequence(String s, String t) {
//修改遍历顺序,外圈遍历t,内圈遍历s。使得dp的推算只依赖正上方和左上方,方便压缩。
int[][] dp = new int[t.length() + 1][s.length() + 1];
for (int i = 1; i < dp.length; i++) {//遍历t字符串
for (int j = 1; j < dp[i].length; j++) {//遍历s字符串
if (t.charAt(i - 1) == s.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = dp[i - 1][j];
}
}
System.out.println(Arrays.toString(dp[i]));
}
return dp[t.length()][s.length()] == s.length();
}
}
class Solution0392_3 {//状态压缩
public boolean isSubsequence(String s, String t) {
int[] dp = new int[s.length() + 1];
for (int i = 0; i < t.length(); i++) {
//需要使用上一轮的dp[j - 1],所以使用倒序遍历
for (int j = dp.length - 1; j > 0; j--) {
//i遍历的是t字符串,j遍历的是dp数组,dp数组的长度比s的大1,因此需要减1。
if (t.charAt(i) == s.charAt(j - 1)) {
dp[j] = dp[j - 1] + 1;
}
}
}
return dp[s.length()] == s.length();
}
}
class Solution0392_4 {
public boolean isSubsequence(String s, String t) {
boolean[] dp = new boolean[s.length() + 1];
//表示“”是t的子序列
dp[0] = true;
for (int i = 0; i < t.length(); i++) {
for (int j = dp.length - 1; j > 0; j--) {
if (t.charAt(i) == s.charAt(j - 1)) {
dp[j] = dp[j - 1];
}
}
}
return dp[dp.length - 1];
}
}
0115_不同的子序列
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;
public class _0115_不同的子序列 {
}
class Solution0115 {
public int numDistinct(String s, String t) {
int[][] dp = new int[s.length() + 1][t.length() + 1];
for (int i = 0; i < s.length() + 1; i++) {
dp[i][0] = 1;
}
for (int i = 1; i < s.length() + 1; i++) {
for (int j = 1; j < t.length() + 1; j++) {
if (s.charAt(i - 1) == t.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.length()][t.length()];
}
}