代码随想录-算法训练营day54【动态规划15:判断子序列、不同的子序列】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客

第九章 动态规划part15

● 392.判断子序列 
● 115.不同的子序列  

 详细布置 

 392.判断子序列 

这道题目算是 编辑距离问题 的入门题目(毕竟这里只是涉及到减法),慢慢的,后面就要来解决真正的 编辑距离问题了

https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html

 115.不同的子序列 

但相对于刚讲过 392.判断子序列,本题 就有难度了 ,感受一下本题和  392.判断子序列 的区别。 

https://programmercarl.com/0115.%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%90%E5%BA%8F%E5%88%97.html

目录

0392_判断子序列

0115_不同的子序列


0392_判断子序列

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

import java.util.Arrays;

public class _0392_判断子序列 {
}

class Solution0392 {
    public boolean isSubsequence(String s, String t) {
        int length1 = s.length();
        int length2 = t.length();
        int[][] dp = new int[length1 + 1][length2 + 1];
        for (int i = 1; i <= length1; i++) {
            for (int j = 1; j <= length2; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = dp[i][j - 1];
                }
            }
        }
        if (dp[length1][length2] == length1) {
            return true;
        } else {
            return false;
        }
    }
}

class Solution0392_2 {
    //修改遍历顺序后,可以利用滚动数组,对dp数组进行压缩
    public boolean isSubsequence(String s, String t) {
        //修改遍历顺序,外圈遍历t,内圈遍历s。使得dp的推算只依赖正上方和左上方,方便压缩。
        int[][] dp = new int[t.length() + 1][s.length() + 1];
        for (int i = 1; i < dp.length; i++) {//遍历t字符串
            for (int j = 1; j < dp[i].length; j++) {//遍历s字符串
                if (t.charAt(i - 1) == s.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
            System.out.println(Arrays.toString(dp[i]));
        }
        return dp[t.length()][s.length()] == s.length();
    }
}

class Solution0392_3 {//状态压缩
    public boolean isSubsequence(String s, String t) {
        int[] dp = new int[s.length() + 1];
        for (int i = 0; i < t.length(); i++) {
            //需要使用上一轮的dp[j - 1],所以使用倒序遍历
            for (int j = dp.length - 1; j > 0; j--) {
                //i遍历的是t字符串,j遍历的是dp数组,dp数组的长度比s的大1,因此需要减1。
                if (t.charAt(i) == s.charAt(j - 1)) {
                    dp[j] = dp[j - 1] + 1;
                }
            }
        }
        return dp[s.length()] == s.length();
    }
}

class Solution0392_4 {
    public boolean isSubsequence(String s, String t) {
        boolean[] dp = new boolean[s.length() + 1];
        //表示“”是t的子序列
        dp[0] = true;
        for (int i = 0; i < t.length(); i++) {
            for (int j = dp.length - 1; j > 0; j--) {
                if (t.charAt(i) == s.charAt(j - 1)) {
                    dp[j] = dp[j - 1];
                }
            }
        }
        return dp[dp.length - 1];
    }
}

0115_不同的子序列

package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class _0115_不同的子序列 {
}

class Solution0115 {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[s.length() + 1][t.length() + 1];
        for (int i = 0; i < s.length() + 1; i++) {
            dp[i][0] = 1;
        }
        for (int i = 1; i < s.length() + 1; i++) {
            for (int j = 1; j < t.length() + 1; j++) {
                if (s.charAt(i - 1) == t.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[s.length()][t.length()];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upward337

谢谢老板~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值