RuntimeError: GET was unable to find an engine to execute this computation

简介:在复现 VLM-R1 多模态模型并尝试迁移 GRPO 算法时,我遇到了一个典型的 PyTorch 报错:“GET was unable to find an engine to execute this computation”。本文深入分析了其成因,并分享了 cuDNN 环境配置的实用经验。

💡 背景介绍

在复现 VLM-R1 多模态项目,并尝试将其中的 GRPO 算法应用到自己的任务中时,我严格按照官方文档配置了推荐的 Conda 环境。然而,在运行训练脚本 run_grpo_rec.sh 时却遭遇了一个难以定位的报错:

RuntimeError: GET was unable to find an engine to execute this computation

这个报错没有太多直观信息,因此记录下本次定位与解决的过程,希望对同样复现该项目或使用类似技术栈的你有所帮助。


📋 报错信息分析

完整堆栈如下:

Traceback (most recent call last):
  ...
  File "/data1/vincia/miniconda3/lib/python3.12/site-packages/deepspeed/runtime/zero/stage3.py", line 2259, in backward
    self.loss_scaler.backward(loss.float(), retain_graph=retain_graph)
  File "/data1/vincia/miniconda3/lib/python3.12/site-packages/deepspeed/runtime/fp16/loss_scaler.py", line 63, in backward
    scaled_loss.backward(retain_graph=retain_graph)
  File "/data1/vincia/miniconda3/lib/python3.12/site-packages/torch/_tensor.py", line 522, in backward
    torch.autograd.backward(
  File "/data1/vincia/miniconda3/lib/python3.12/site-packages/torch/autograd/__init__.py", line 266, in backward
    Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: GET was unable to find an engine to execute this computation
终端完整报错信息

这个报错是在 loss.backward() 的过程中出现的,由 PyTorch 后端执行引擎抛出,提示找不到可用的计算引擎来完成反向传播操作。


🔍 初步分析:PyTorch 与 CUDA/cuDNN 兼容性问题

通过调研与阅读 GitHub issue,我发现这类问题多半与 PyTorch、CUDA 和 cuDNN 的不匹配有关。尤其是在使用 PyTorch 2.x、torch.compile() 或 Deepspeed、FlashAttention、GRPO 等底层优化组件时,PyTorch 默认会尝试调用底层 GET(Graph Execution Tracing)引擎进行优化加速,但该引擎依赖底层的 CUDA runtime 与 cuDNN 支持库。

常见的触发场景包括:

  • 安装了 nvidia-cudnn-cu12 但系统中实际 CUDA 是 11.x;

  • 使用 pip install torchconda install pytorch 时未明确指定 CUDA 版本;

  • 系统中多个 CUDA 版本并存,且未正确设置默认路径;

  • PyTorch 编译支持的新特性(如 memory-efficient attention、torch.compile)在环境中未激活/不兼容。


✅ 解决方案:正确配置 CUDA 与 cuDNN 环境变量

✅ 通过环境变量显式指定使用的 CUDA 版本

.bashrc 或当前终端中添加如下环境变量(请将 12.1 替换为你实际安装的版本):

export PATH=/usr/local/cuda-12.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

✅ 原理说明

这些环境变量的作用如下:

  • PATH:指定可执行文件查找路径,确保运行的 nvcc 等命令来自指定 CUDA 版本;

  • LD_LIBRARY_PATH:指定动态链接库查找路径,确保 PyTorch 在运行时加载的是正确的 libcudart.solibcudnn.so 等底层库文件。

如果系统中存在多个 CUDA 安装目录,未设置这些路径可能导致 PyTorch 加载到错误版本的库,从而出现执行引擎无法初始化的问题。


🔧 项目相关环境(供参考)

  • Python 版本:3.12

  • PyTorch:2.2.0

  • CUDA:12.1

  • cuDNN:8.9

  • 加速组件:Deepspeed, FlashAttention-2, GRPO(VLM-R1 中间件)


📌 总结

这次的 Debug 经历说明了在复现多模态大模型项目时,软硬件环境的一致性至关重要。尤其是像 VLM-R1 这样高度依赖底层加速库的项目,稍有版本不匹配就可能导致底层执行报错。

👣 如果你也遇到类似的问题,不妨按以下思路排查:

  1. 检查 PyTorch 与 CUDA/cuDNN 的兼容版本;

  2. 设置正确的环境变量;

  3. 使用 Conda 管理单一环境,避免 pip/apt 与系统环境冲突;

  4. 考虑降级 PyTorch 或避免使用 torch.compile 等前沿功能做对比实验。


📬 如果你也在复现类似的视觉语言模型(VLM)项目,或者对 GRPO / Deepspeed 的优化原理感兴趣,欢迎留言交流!


### 错误分析 当遇到 `RuntimeError: GET was unable to find an engine to execute this computation` 这类错误时,通常意味着 PyTorch 无法找到合适的计算引擎来执行特定的操作。此问题可能由多种因素引起,包括但不限于环境配置不当、库版本不匹配等。 #### 版本兼容性问题 该错误的一个常见原因是 PyTorch 和其他依赖项之间的版本不一致。特别是 torch 和 torchvision 的组合可能导致此类异常[^4]。如果其中一个组件更新到了较新版本而另一个保持旧版,则可能会引发上述错误。 #### 环境隔离不足 在 Anaconda 自定义环境中通过 pip 安装 PyTorch 后发生这种情况也较为普遍[^2]。这表明可能存在多个 Python 解释器实例或不同路径下的包冲突干扰了正常工作流程。 --- ### 解决策略 为了有效处理这个问题并恢复正常的模型训练过程: #### 方法一:调整软件栈版本 确保所使用的 PyTorch 及其相关扩展(如 torchvision)处于相互支持的状态非常重要。可以尝试回滚到更稳定的版本组合以规避潜在的 bug 或者未完全适配的新特性带来的影响。 对于 YOLOv5 来说,建议先卸载现有的 PyTorch 安装,然后按照官方文档推荐的方式重新安装指定版本的 PyTorchtorchvision 库。 ```bash pip uninstall torch torchvision pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html ``` 请注意根据自己的 CUDA 版本来选择合适链接中的具体命令。 #### 方法二:创建纯净虚拟环境 考虑到现有环境下可能存在残留文件或其他未知变量的影响,在全新且独立的空间内构建项目往往能带来更好的稳定性。利用 Conda 创建一个新的 conda 虚拟环境,并严格按照需求说明安装必要的工具链是一个不错的选择。 ```bash conda create --name yolov5_env python=3.8 conda activate yolov5_env pip install -r requirements.txt # 假设有一个requirements.txt 文件列出了所有必需品 ``` 这种方法有助于排除任何外部因素造成的干扰,从而专注于解决问题本身。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值