简介:在复现 VLM-R1 多模态模型并尝试迁移 GRPO 算法时,我遇到了一个典型的 PyTorch 报错:“GET was unable to find an engine to execute this computation”。本文深入分析了其成因,并分享了 cuDNN 环境配置的实用经验。
💡 背景介绍
在复现 VLM-R1 多模态项目,并尝试将其中的 GRPO 算法应用到自己的任务中时,我严格按照官方文档配置了推荐的 Conda 环境。然而,在运行训练脚本 run_grpo_rec.sh
时却遭遇了一个难以定位的报错:
RuntimeError: GET was unable to find an engine to execute this computation
这个报错没有太多直观信息,因此记录下本次定位与解决的过程,希望对同样复现该项目或使用类似技术栈的你有所帮助。
📋 报错信息分析
完整堆栈如下:
Traceback (most recent call last):
...
File "/data1/vincia/miniconda3/lib/python3.12/site-packages/deepspeed/runtime/zero/stage3.py", line 2259, in backward
self.loss_scaler.backward(loss.float(), retain_graph=retain_graph)
File "/data1/vincia/miniconda3/lib/python3.12/site-packages/deepspeed/runtime/fp16/loss_scaler.py", line 63, in backward
scaled_loss.backward(retain_graph=retain_graph)
File "/data1/vincia/miniconda3/lib/python3.12/site-packages/torch/_tensor.py", line 522, in backward
torch.autograd.backward(
File "/data1/vincia/miniconda3/lib/python3.12/site-packages/torch/autograd/__init__.py", line 266, in backward
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: GET was unable to find an engine to execute this computation

这个报错是在 loss.backward()
的过程中出现的,由 PyTorch 后端执行引擎抛出,提示找不到可用的计算引擎来完成反向传播操作。
🔍 初步分析:PyTorch 与 CUDA/cuDNN 兼容性问题
通过调研与阅读 GitHub issue,我发现这类问题多半与 PyTorch、CUDA 和 cuDNN 的不匹配有关。尤其是在使用 PyTorch 2.x、torch.compile()
或 Deepspeed、FlashAttention、GRPO 等底层优化组件时,PyTorch 默认会尝试调用底层 GET(Graph Execution Tracing)引擎进行优化加速,但该引擎依赖底层的 CUDA runtime 与 cuDNN 支持库。
常见的触发场景包括:
-
安装了
nvidia-cudnn-cu12
但系统中实际 CUDA 是 11.x; -
使用
pip install torch
或conda install pytorch
时未明确指定 CUDA 版本; -
系统中多个 CUDA 版本并存,且未正确设置默认路径;
-
PyTorch 编译支持的新特性(如 memory-efficient attention、torch.compile)在环境中未激活/不兼容。
✅ 解决方案:正确配置 CUDA 与 cuDNN 环境变量
✅ 通过环境变量显式指定使用的 CUDA 版本
在 .bashrc
或当前终端中添加如下环境变量(请将 12.1 替换为你实际安装的版本):
export PATH=/usr/local/cuda-12.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
✅ 原理说明
这些环境变量的作用如下:
-
PATH
:指定可执行文件查找路径,确保运行的nvcc
等命令来自指定 CUDA 版本; -
LD_LIBRARY_PATH
:指定动态链接库查找路径,确保 PyTorch 在运行时加载的是正确的libcudart.so
、libcudnn.so
等底层库文件。
如果系统中存在多个 CUDA 安装目录,未设置这些路径可能导致 PyTorch 加载到错误版本的库,从而出现执行引擎无法初始化的问题。
🔧 项目相关环境(供参考)
-
Python 版本:3.12
-
PyTorch:2.2.0
-
CUDA:12.1
-
cuDNN:8.9
-
加速组件:Deepspeed, FlashAttention-2, GRPO(VLM-R1 中间件)
📌 总结
这次的 Debug 经历说明了在复现多模态大模型项目时,软硬件环境的一致性至关重要。尤其是像 VLM-R1 这样高度依赖底层加速库的项目,稍有版本不匹配就可能导致底层执行报错。
👣 如果你也遇到类似的问题,不妨按以下思路排查:
-
检查 PyTorch 与 CUDA/cuDNN 的兼容版本;
-
设置正确的环境变量;
-
使用 Conda 管理单一环境,避免 pip/apt 与系统环境冲突;
-
考虑降级 PyTorch 或避免使用
torch.compile
等前沿功能做对比实验。
📬 如果你也在复现类似的视觉语言模型(VLM)项目,或者对 GRPO / Deepspeed 的优化原理感兴趣,欢迎留言交流!