Machine Learning-L1-机器学习pipeline

本文详细阐述了机器学习的五个核心阶段:定义问题、获取数据、数据处理、模型训练与评估及模型部署。从理解实际场景到模型上线运行,每个环节都至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
一个典型的机器学习包括以下几个过程:

1. 定义问题

理解实际场景是机器学习的第一步,需要将业务问题抽象为机器学习能处理的数学问题,包括明确可以获得哪些数据、什么样的数据、数据是怎样的格式,原始数据需要做怎样的处理,机器学习的目标是一个分类、回归还是聚类等。

2. 获取数据

“ 数据决定机器学习结果的上限,而算法只是尽可能的逼近这个上限”。获取的数据需要业务相关,能够解决业务问题,并且是全面的、客观的,具有“代表性”的数据。

3. 数据处理

现实世界的数据一般是不完整的、有噪声的和不一致的。机器学习80%的时间都是在做数据处理,数据处理是机器学习的基础步骤。
数据预处理、数据清洗决定的数据质量,特征工程是机器学习的关键,主要包括从清洗后的数据中,根据实际业务场景提取特征,筛选出显著特征、摒弃非显著特征,需要结合领域知识反复迭代,这对很多结果有决定性的影响。此外还需对特征进行转换、离散化、归一化等。

4. 模型训练、评估与调优

选择合适的模型并通过训练数据训练模型,通过测试数据,评估模型的有效性,分析原因,提升算法性能。

5. 模型部署

模型上线运行,根据准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性
不断迭代优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隐私无忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值