隐马尔可夫模型
隐马尔可夫模型(HMM,Hidden Markov model)是关于时序的概率模型,描述由隐藏马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。
隐马尔可夫模型属于动态贝叶斯网,可用于标注问题的模型学习,属于生成模型,在语音识别、自然语言处理,生物信息等领域有着广泛应用。
1. 基本概念
1.1 标注问题
标注(Tagging)问题是分类问题的推广,又是更复杂的结构预测(structure prediction)问题的简单形式。
- 输入:观测序列
- 输出:标记序列或状态序列
- 目的:学习一个模型,使其能够对观测序列给出标记序列作为预测
标注问题针对训练集 D D D, D = { ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , . . . , ( x ( m ) , y ( m ) ) } D=\{(\boldsymbol x^{(1)},\boldsymbol y^{(1)}), (\boldsymbol x^{(2)}, \boldsymbol y^{(2)}),...,(\boldsymbol x^{(m)},\boldsymbol y^{(m)})\} D={(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}输入观测序列: x ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ) T , i = 1 , 2 , . . . , m \boldsymbol x^{(i)} = (x_1^{(i)}, x_2^{(i)}, ...,x_n^{(i)})^{T},i={1,2,...,m} x(i)=(x1(i),x2(i),...,xn(i))T,i=1,2,...,m输出标记序列: y ( i ) = ( y 1 ( i ) , y 2 ( i ) , . . . , y n ( i ) ) T , i = 1 , 2 , . . . , m \boldsymbol y^{(i)} = (y_1^{(i)}, y_2^{(i)}, ...,y_n^{(i)})^{T},i={1,2,...,m} y(i)=(y1(i),y2(i),...,yn(i))T,i=1,2,...,m n n n是序列的长度, m m m为样本个数, n < < m n<<m n<<m。
学习一个模型(条件概率分布):
P
(
Y
1
,
Y
2
,
.
.
.
,
Y
n
∣
X
1
,
X
2
,
.
.
.
,
X
n
)
P(Y_1, Y_2, ...,Y_n \mid X_1, X_2, ...,X_n)
P(Y1,Y2,...,Yn∣X1,X2,...,Xn)
使得对于一个新的观测序列:
x
(
m
+
1
)
=
(
x
1
(
m
+
1
)
,
x
2
(
m
+
1
)
,
.
.
.
,
x
n
(
m
+
1
)
)
T
\boldsymbol x^{(m+1)}=(x_1^{(m+1)}, x_2^{(m+1)}, ...,x_n^{(m+1)})^{T}
x(m+1)=(x1(m+1),x2(m+1),...,xn(m+1))T
找到使条件概率
P
(
(
y
1
(
m
+
1
)
,
y
2
(
m
+
1
)
,
.
.
.
,
y
n
(
m
+
1
)
)
T
∣
x
1
(
m
+
1
)
,
x
2
(
m
+
1
)
,
.
.
.
,
x
n
(
m
+
1
)
)
T
P((y_1^{(m+1)}, y_2^{(m+1)}, ...,y_n^{(m+1)})^{T} \mid x_1^{(m+1)}, x_2^{(m+1)}, ...,x_n^{(m+1)})^{T}
P((y1(m+1),y2(m+1),...,yn(m+1))T∣x1(m+1),x2(m+1),...,xn(m+1))T最大的标记序列
y
(
m
+
1
)
=
(
y
1
(
m
+
1
)
,
y
2
(
m
+
1
)
,
.
.
.
,
y
n
(
m
+
1
)
)
T
\boldsymbol y^{(m+1)}=(y_1^{(m+1)}, y_2^{(m+1)}, ...,y_n^{(m+1)})^{T}
y(m+1)=(y1(m+1),y2(m+1),...,yn(m+1))T
1.2 马尔可夫链
随机过程
x
(
t
)
x(t)
x(t),在
t
t
t时刻的状态
i
t
i_t
it,仅与
t
−
1
t-1
t−1时刻的状态
i
t
−
1
i_{t-1}
it−1有关,即
P
(
i
t
∣
i
t
−
1
,
.
.
.
,
i
1
)
=
P
(
i
t
∣
i
t
−
1
)
,
t
=
1
,
2
,
.
.
.
T
P(i_t \mid i_{t-1},...,i_{1})=P(i_t \mid i_{t-1}),t=1,2,...T
P(it∣it−1,...,i1)=P(it∣it−1),t=1,2,...T,该过程称为马尔可夫过程(Markov Process),又称马尔可夫链(Markov Chain)。
上图为一个马尔可夫链,可以看出 P ( i t + 1 = M 3 ∣ i t = M 2 ) = 0.6 , P ( i t + 1 = M 4 ∣ i t = M 2 ) = 0.4 P(i_{t+1}=M_3 \mid i_t=M_2)=0.6,\;\;P(i_{t+1}=M_4 \mid i_t=M_2)=0.4 P(it+1=M3∣it=M2)=0.6,P(it+1=M4∣it=M2)=0.4
1.3 隐马尔可夫模型
隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(state sequence);
每个状态生成一个观测,由此产生的观测的随机序列,称为观测序列(observation sequence);
序列的每个位置为一个时刻。
- 状态集合: Q = { q 1 , q 2 , . . . , q N } Q=\{q_1,q_2,...,q_N\} Q={q1,q2,...,qN}, N N N是可能的状态数。
- 观测集合: V = { v 1 , v 2 , . . . , v M } V=\{v_1,v_2,...,v_M\} V={v1,v2,...,vM}, M M M是可能的观测数。
- 状态序列: I = ( i 1 , i 2 , . . . , i T ) I=(i_1,i_2,...,i_T) I=(i1,i2,...,iT), T T T是状态序列的长度。
- 观测序列:
O
=
(
o
1
,
o
2
,
.
.
.
,
o
T
)
O=(o_1,o_2,...,o_T)
O=(o1,o2,...,oT)。
(1)定义
隐马尔可夫模型 λ \lambda λ由状态转移概率分布矩阵 A A A、观测概率矩阵 B B B及初始概率分布向量 π \pi π确定,可表示为 λ = ( A , B , π ) \lambda=(A,B,\pi) λ=(A,B,π)。 π \pi π和 A A A决定状态序列, B B B决定观测序列。
-
状态转移概率矩阵 A = [ a i j ] N × N A=[a_{ij}]_{N \times N} A=[aij]N×N,其中 a i j = P ( i t + 1 = q j ∣ i t = q i ) , i = 1 , 2 , . . . , N ; j = 1 , 2 , . . . , N a_{ij}=P(i_{t+1}=q_j \mid i_t=q_i),i=1,2,...,N;j=1,2,...,N aij=P(it+1=qj∣it=qi),i=1,2,...,N;j=1,2,...,N是 t t t时刻 q i q_i qi状态下转移到 t + 1 t+1 t+1时刻 q j q_j qj状态的概率。
-
观测概率矩阵 B = [ b j k ] N × M B=[b_{jk}]_{N \times M} B=[bjk]N×M,其中 b j k = P ( o t = v k ∣ i t = q j ) , k = 1 , 2 , . . . , M ; j = 1 , 2 , . . . , N b_{jk}=P(o_t=v_k \mid i_t=q_j),k=1,2,...,M;j=1,2,...,N bjk=P(ot=vk∣it=qj),k=1,2,...,M;j=1,2,...,N是 t t t时刻 q j q_j qj状态下生成观测 v k v_k vk的概率。
-
初始状态概率向量 π = ( π i ) \pi = (\pi_i) π=(πi),其中 π i = P ( i 1 = q i ) , i = 1 , 2 , . . . , N \pi_i=P(i_1=q_i),i=1,2,...,N πi=P(i1=qi),i=1,2,...,N是 t = 1 t=1 t=1时刻处于状态 q i q_i qi的概率。
根据定义,观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT)的生成过如下:
- Step1: 按照初始状态分布 π \pi π产生状态 i 1 i_1 i1
- Step2: 令 t = 1 t=1 t=1
- Step3: 按照状态 i t i_t it的观测概率分布 b i t ( k ) b_{i_t}(k) bit(k)生成 o t o_t ot
- Step4: 按照状态 i t i_t it的转移概率分布 { a i t , i t + 1 } \{a_{i_t,i_{t+1}}\} {ait,it+1}产生状态 i t + 1 i_{t+1} it+1
- Step5: 令 t = t + 1 t=t+1 t=t+1,若 t < T t<T t<T,转至Step3;否则,终止
(2)两个基本假设
由定义可知,隐马尔可夫模型有两个基本假设:
- 齐次马尔可夫性假设:隐藏马尔可夫链任意 t t t时刻的状态 i t i_t it只依赖于 t − 1 t-1 t−1时刻的状态 i t − 1 i_{t-1} it−1,与其他时刻的状态及观测无关,也与时刻 t t t无关,即
P ( i t ∣ i t − 1 , o t − 1 , . . . , i 1 , o 1 ) = P ( i t ∣ i t − 1 ) , t = 1 , 2 , . . . T P(i_t \mid i_{t-1},o_{t-1},...,i_{1},o_{1})=P(i_t \mid i_{t-1}),t=1,2,...T P(it∣it−1,ot−1,...,i1,o1)=P(it∣it−1),t=1,2,...T
- 观测独立性假设:任意 t t t时刻的观测 o t o_t ot只依赖于该时刻的马尔可夫链的状态 o t o_t ot,与其他观测即状态无关,即
P ( o t ∣ i T , o T , i T − 1 , o T − 1 . . . , i t + 1 , o t + 1 , i t , i t − 1 , o t − 1 , . . . , i 1 , o 1 ) = P ( o t ∣ i t ) , t = 1 , 2 , . . . T P(o_t \mid i_{T},o_{T},i_{T-1},o_{T-1}...,i_{t+1},o_{t+1},i_{t},i_{t-1},o_{t-1},...,i_{1},o_{1})=P(o_t \mid i_{t}),t=1,2,...T P(ot∣iT,oT,iT−1,oT−1...,it+1,ot+1,it,it−1,ot−1,...,i1,o1)=P(ot∣it),t=1,2,...T
1.4 E.g.
按如下步骤,产生颜色序列:
- Step1:从4个盒子中等概率选取1个盒子,然后随机抽出1个球,记录颜色并放回
- Step2:按照如下规则选择盒子,从选定的盒子中抽出1个球,记录颜色并放回
- 如果当前盒子是A:直接选择盒子B
- 如果当前盒子是B或C:以0.4概率转移到左边盒子,0.6的概率转移到右边盒子
- 如果当前盒子是D:以0.5的概率停留在盒子D,0.5的概率转移到盒子C
即按照如下马尔可夫链选择盒子:
如此重复 T T T次,得到颜色的观测序列。
该例子为一个隐马尔可夫模型,有两个随机序列:
- 状态序列:盒子的序列(隐藏的),长度为 T T T
- 观测序列:颜色的观测序列(可观测的),长度为 T T T
- 状态集合: Q = { A , B , C , D } Q=\{A,B,C,D\} Q={A,B,C,D},状态数 N = 4 N=4 N=4
- 观测集合: V = { 红 , 白 } V=\{红,白\} V={红,白},观测数 M = 2 M=2 M=2
- 初始概率分布: π = ( 0.25 , 0.25 , 0.25 , 0.25 ) \pi = (0.25,0.25,0.25,0.25) π=(0.25,0.25,0.25,0.25)
- 状态转移概率分布: A = [ 0 1 0 0 0.4 0 0.6 0 0 0.4 0 0.6 0 0 0.5 0.5 ] A = \begin{bmatrix} 0 && 1 && 0 &&0 \\ 0.4 && 0 && 0.6 &&0 \\ 0 && 0.4 && 0 &&0.6\\ 0 && 0 && 0.5 &&0.5\\ \end{bmatrix} A=⎣⎢⎢⎡00.400100.4000.600.5000.60.5⎦⎥⎥⎤
- 观测概率分布:
b
=
[
0.5
0.5
0.3
0.7
0.6
0.4
0.8
0.2
]
b = \begin{bmatrix} 0.5 && 0.5 \\ 0.3 && 0.7 \\ 0.6 && 0.4 \\ 0.8 && 0.2 \\ \end{bmatrix}
b=⎣⎢⎢⎡0.50.30.60.80.50.70.40.2⎦⎥⎥⎤
其中, b 21 = P ( o t = v 1 ∣ i t = q 2 ) = P ( o t = 红 ∣ i t = B ) = 0.3 , j = 2 , k = 1 b_{21}=P(o_t=v_1 \mid i_t=q_2)=P(o_t=红 \mid i_t= B)=0.3,j=2,k=1 b21=P(ot=v1∣it=q2)=P(ot=红∣it=B)=0.3,j=2,k=1
表示 t t t时刻,B盒状态下生成观测为红球的概率为0.3。
2. 三个基本问题
2.1 概率计算问题
已知模型 λ = ( A , B , π ) \lambda=(A,B,\pi) λ=(A,B,π)和观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT),计算在模型 λ \lambda λ下观测序列 O O O出现的概率 P ( O ∣ λ ) P(O \mid \lambda) P(O∣λ)。采用前向(forward)与后向(backward)算法。
2.2 学习问题
已知观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT),估计模型参数 ( A , B , π ) (A,B,\pi) (A,B,π),即使得该模型下观测序列产生的概率 P ( O ∣ λ ) P(O \mid \lambda) P(O∣λ)最大,可使用极大似然估计法估计参数。
如果将观测序列看做观测数据 O O O,而状态序列看做不可观测的隐数据 I I I,则隐马尔可夫模型可看做是一个含有隐变量的概率模型
P ( O ∣ λ ) = ∑ I P ( O ∣ I , λ ) P ( I ∣ λ ) P(O \mid \lambda) = \sum_I P(O \mid I,\lambda)P(I \mid \lambda) P(O∣λ)=I∑P(O∣I,λ)P(I∣λ)可使用EM算法(Baum-Welch算法)实现隐马尔可夫模型的训练。
2.3 预测问题
已知模型 λ = ( A , B , π ) \lambda=(A,B,\pi) λ=(A,B,π)和观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT),计算使得条件概率 P ( I ∣ O ) P(I \mid O) P(I∣O)最大的状态序列 I = ( i 1 , i 2 , . . . , i T ) I=(i_1,i_2,...,i_T) I=(i1,i2,...,iT),即给定观测序列,求对应的最可能的状态序列,又称解码问题。
维比特算法应用动态规划搞笑求解最优路径,即概率最大的状态路径。