Python数据分析(三)—— Pandas数据统计

本文通过MovieLens数据集,详细介绍了使用Pandas进行数据统计的方法,包括基础统计、groupby分组运算及pivottable透视表的使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍Pandas中的数据统计方法,部分使用的数据集为MovieLen 1M版本(m1-1m.zip)数据集。

import numpy as np
import pandas as pd

#加载数据集
fpath = r'datasets//'

usercol = ['uid','sex','age','occupation','zip']
ratcol = ['uid','mid','rating','timestamp']
movcol = ['mid','title','genres']

users = pd.read_table(fpath+'users.dat',sep='::',header=None, names=usercol,engine='python')
ratings = pd.read_table(fpath+'ratings.dat',sep='::',header=None, names=ratcol,engine='python')
movies = pd.read_table(fpath+'movies.dat',sep='::',header=None,names=movcol,engine='python')
data = pd.merge(pd.merge(users,ratings),movies)

1 简单统计

unique计算Series中的唯一值数组,按发现的顺序返回。
value_counts返回一个Series,索引为唯一值,值为频率,按计数值降序排列。

data.age.unique()

在这里插入图片描述

data.age.value_counts()

在这里插入图片描述

2 groupby

分组运算的过程被描述为split-apply-combine:数据根据提供的一个或多个键被拆分(split)为多组,拆分操作在对象的特定轴上执行的;然后将一个函数应用(apply)到各个分组并产生一个新值;最后所有函数的执行结果会被合并(combine)到最终的结果对象中。

在这里插入图片描述

import pandas as pd 
import numpy as np
df = pd.DataFrame({'col1':['a','a','b','b','a'],
                   'col2':['one','two','one','two','one'],
                   'data1': np.random.randn(5),
                   'data2': np.random.randn(5)})
df

在这里插入图片描述
groupby方法形成一个Groupby对象,没有进行任何实际计算,只是含有一些有关分组键的中间数据,即该对象已包含接下来对各分组执行运算所需的一切信息。

grouped = df.groupby(['col1','col2'])
grouped.mean()

在这里插入图片描述

3 pivot table

透视表(pivot table)根据一个或多个键对数据进行聚合,并根据行和列上的分组键将数据分配到各个矩形区域中。pivot_table()函数除能为groupby提供便利外,还可以添加分项小计(margins)。

pivot_table(values,index,columns,aggfunc,fill_value)

主要参数如下:

  • values:数据透视表中的值
  • index:数据透视表中的行
  • columns:数据透视表中的列
  • aggfunc:统计函数(应用到values上)
  • fill_value:替换NA值
df.pivot_table(index='col1',aggfunc='mean')
#df.groupby(['col1']).mean()

在这里插入图片描述

df.pivot_table('data1',index='col1',aggfunc='mean')
#df.groupby(['col1']).data1.mean()

在这里插入图片描述

df.pivot_table(['data1','data2'],index='col2',columns='col1',aggfunc='mean')
#df.groupby(['col1','col2']).mean().unstack()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隐私无忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值