论文笔记_S2D.30_2017-CSVT_使用全卷积深度残差网络,作为分类问题,从单目图像估计深度

该论文提出将深度估计转化为像素级分类问题,利用深度残差网络进行建模。通过离散化连续的深度值并用全连接的条件随机场(CRF)进行后处理,提高了预测的准确性和置信度。实验表明,这种方法优于传统的深度回归,并且对深度标签的数量不敏感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

基本情况

介绍

深度估计模型overview

网络结构

Loss函数

全连接的条件随机场(CRF)

实验

部分实验结果


基本情况

  • 题目:Estimating Depth from Monocular Images as Classification Using Deep Fully Conv Residual Net
  • 出处:Cao, Y., Wu, Z., & Shen, C. (2017). Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Transactions on Circuits and Systems for Video Technology28(11), 3174-3182.
  • 论文在这儿

介绍

之前的一些方法大都采用回归方法(由于深度连续的特性)进行深度估计,但效果并不好。在这篇论文中,将深度估计看成是一个像素级别的分类问题

首先,将连续的ground-truth depths离散化成

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惊鸿一博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值