经典的卷积神经网络(VGG,GoogLeNet等)

本文介绍了四个经典的卷积神经网络模型:LeNet的7层结构,AlexNet的深度学习突破,VGG的不同深度版本探索,以及GoogLeNet的Inception模块创新。这些模型对深度学习和图像识别领域产生了深远影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeNet

LeNet原文地址:https://ieeexplore.ieee.org/abstract/document/726791

在这里插入图片描述Lenet是一个 7 层的神经网络(不包含输入层),包含 3 个卷积层,2 个池化层,2 个全连接层。它的网络结构图如下所示:
在这里插入图片描述

详见:卷积神经网络模型之——LeNet网络结构与代码实现https://wang11.blog.csdn.net/article/details/125451194

AlexNet

AlexNet原文地址:https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
在这里插入图片描述
AlexNet网络的原始输入图像大小为【3,224,224】,由5个卷积层、3个池化层和3个全连接层构成,并且在每一个卷积层和全连接层之后都进行一次ReLU激活。其中的3个池化层分别跟在第1、第2和第5个卷积层的激活之后。网络结构图如下:
在这里插入图片描述
详见:卷积神经网络模型之——AlexNet网络结构与代码实现https://wang11.blog.csdn.net/article/details/125461622

VGG

VGG原文:Very deep convolutional networks for large-scale image recognition:https://arxiv.org/pdf/1409.1556.pdf

在这里插入图片描述
在论文中,作者尝试了使用5种不同的网络结构,深度分别为11,11,13,16,19,5种结构图如下所示:
在这里插入图片描述
详见:卷积神经网络模型之——VGG-16网络结构与代码实现:https://wang11.blog.csdn.net/article/details/125566442

GoogLeNet

GoogLeNet原文地址:Going Deeper with Convolutions:https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
在这里插入图片描述
GoogLeNet的完整网络结构如下所示:
在这里插入图片描述
详见:卷积神经网络模型之——GoogLeNet网络结构与代码实现:https://wang11.blog.csdn.net/article/details/125626247

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1 + 1=王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值