Transformers without Normalization

https://arxiv.org/pdf/2503.10622

在这里插入图片描述

摘要

归一化层在现代神经网络中无处不在,并且长期以来一直被认为是必不可少的。本研究表明,不使用归一化的Transformer可以通过一种非常简单的技术达到相同或更好的性能。我们引入了动态双曲正切(Dynamic Tanh,简称DyT),这是一种逐元素运算DyT⁡(x)=tanh⁡(αx)\operatorname{DyT}(\boldsymbol{x})=\tanh (\alpha \boldsymbol{x})DyT(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值