【面试题】 如何处理中文分词?

一句话金句: 跳过传统分词,让模型自己学。

通俗解释:

  • 传统方法 (过时): 先用一个外部工具(如结巴分词)把句子切成词(如 ["我", "喜欢", "机器学习"]),再喂给模型。风险是分词一旦错了,模型后面全错
  • 现代方法 (主流): 直接把中文句子看成是由一个个汉字组成的序列,然后对这个汉字序列应用BPE或WordPiece等子词算法。
    • 模型会自己学会哪些字经常在一起出现,应该组合成一个语义单元(比如“机器学习”可能会被模型组合在一起)。
    • 这种方法避免了传统分词的错误传递,更加灵活有效。

面试得分点:

  • 指出传统方法的误差传播弊端。
  • 强调所有主流模型(BERT、GPT等)现在都直接将汉字作为基本输入单位

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值