OpenCV学习16--Laplance算子

本文介绍了一种基于拉普拉斯算子的图像边缘检测方法。该方法首先使用高斯模糊去除噪声,然后将图像转换为灰度图,接着利用拉普拉斯算子计算图像的二阶导数并提取边缘信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论:
在二阶微分的时候,最大变化处的值为零即边缘是零值,通过二阶导数计算,依据理论我们可以计算出图像二阶导数,提取边缘。
这里写图片描述
处理流程:
高斯模糊-去噪声GaussianBlur()
转化为灰度图像cvtColor()
拉普拉斯-二阶导数计算Laplacian()
提取绝对值convertScaleAbs()
显示结果

代码:

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;

int main(int argc,char ** argv)
{
    Mat src,gray_src,edge_img,dst;    

    src = imread("1.jpg");
    namedWindow("input window",CV_WINDOW_AUTOSIZE);
    imshow("input window",src);

    GaussianBlur(src,dst,Size(3,3),0,0);
    cvtColor(dst,gray_src,CV_BGR2GRAY);

    Laplacian(gray_src,edge_img,CV_16S,3);
    convertScaleAbs(edge_img,edge_img);

    imshow("1",edge_img);
    waitKey(0);
    return 0;
}

效果:
这里写图片描述

github源码和图片下载地址:
https://github.com/MRwangmaomao/OpencvTestLaplace-Project.git

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南山二毛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值