CSP201803-2碰撞的小球

问题描述:
  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
  初始时,三个小球的位置分别为4, 6, 8。
![在这里插入图片描述](https://img-blog.csdnimg.cn/2019100317545193.png  
  一秒后,三个小球的位置分别为5, 7, 9。
在这里插入图片描述
  两秒后,第三个小球碰到墙壁,速度反向,三个小球位置分别为6, 8, 10。

在这里插入图片描述
  三秒后,第二个小球与第三个小球在位置9发生碰撞,速度反向(注意碰撞位置不一定为偶数),三个小球位置分别为7, 9, 9。
在这里插入图片描述
  四秒后,第一个小球与第二个小球在位置8发生碰撞,速度反向,第三个小球碰到墙壁,速度反向,三个小球位置分别为8, 8, 10。
在这里插入图片描述
  五秒后,三个小球的位置分别为7, 9, 9。
在这里插入图片描述
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
  对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
  保证所有小球的初始位置互不相同且均为偶数。

问题分析:

用结构体来存储与小球有关的信息,分别需要存储小球的x坐标、速度、以及小球的编号。速度取值为1时,表示小球向x轴的正方向运动,取值为-1时,表示向x轴的负方向(即原点方向)运动。小球的编号即为小球位置坐标的输入顺序,从0开始编号。

struct Ball {
	short x;	//小球的x坐标
	short v = 1;	//小球的速度
	short serialNum;	//每个小球的编号
};

因为小球的个数不会超过100,因此定义一个大小为100结构体数组来存储每个小球。
当所有小球的位置坐标输入完毕之后,对小球按照位置坐标的大小进行排序。位置坐标最小的存放在0号下标的数组元素内,坐标最大的存放在n-1号下标的数组元素内。这样做的目的是为了方便模拟碰撞过程,因为可以证明,小球只可能与紧邻它的小球发生碰撞,因此排完序之后,除了第0个小球外,其余的小球只需要判断它会不会与它前面的小球发生碰撞即可。
虽然对小球进行排序会方便碰撞过程的模拟,但是这也带来了新的问题:当规定的运动时间到了之后,若按数组下标顺序输出每个小球的坐标,则此时输出的第一个小球不一定是原先输入的第一个小球,因为对小球按初始位置坐标进行了排序,因此还需要记录下小球原先的顺序,结构体中的serialNum正是发挥着这个作用。

下面我举例来说明输出时找原先顺序的算法。
假设有一个数组为A = {14,12,16,6,10},现在对其进行升序排序之后的结果为B = {6,10,12,14,16},若想输出时仍按原先的顺序,即输出{14,12,16,6,10},是不是B[0]应该是第3个(从0开始编号)输出,B[1]应该是第4个输出,B[2]是第1个输出,B[3]是第0个输出,B[4]是第2个输出。我们把这个输出顺序存放在数组c = {3,4,1,0,2},现在再定义一个数组d = {3,2,4,0,1},发现输出时只需B[d[i]],i从0开始自加即可输出{14,12,16,6,10},现在的问题是数组d是如何得到的。观察数组c,发现令d[c[i]] = i,i从0开始自加即可得到d = {3,2,4,0,1}。,
看明白了上面的例子,在看下面这段代码就会相对容易些,ball[i].serialNum相当于上面例子中的c[i],数组pos相当于上面例子中的数组d。

	for (int i = 0; i < n; i++)
		pos[ball[i].serialNum] = i;

	cout << ball[pos[0]].x;	//因为两个整数之间需要有空格,所以把第0个单独输出
	for (int i = 1; i < n; i++) {
		cout <<" "<<ball[pos[i]].x;
	}

小球运动时间t秒,相当于循环t次,每次都要计算小球的位置,位置计算公式就是x+v*1,可以看出是每秒钟计算一次小球的位置。之所以能这样做,是因为小球只可能在整数坐标处发生相撞,而速度的大小又恰好是一个单位,因此小球的位置每秒钟也变化一个单位。如果某个小球的位置坐标和它前面的小球的位置坐标相同,则两球相撞,让他们的速度取相反数即可。

源代码

#include <bits/stdc++.h>
using namespace std;
struct Ball {
	short x;	//小球的x坐标
	short v = 1;	//小球的速度
	short serialNum;	//每个小球的编号
};
Ball ball[100];
void swap(short &a, short &b) {
	short temp = a;
	a = b;
	b = temp;
}
int main()
{
	int n, L, t;
	cin >> n >> L >> t;
	for (int i = 0; i < n; i++) {
		cin >> ball[i].x;
		ball[i].serialNum = i;	//输入的顺序即为小球的编号,从零开始
	}
	int pos[100];
	//对小球按照x坐标进行排序,x坐标值小的排在前面
	for(int i = 0;i < n;i++)
		for (int j = 0; j < n -i-1; j++) {
			if (ball[j].x > ball[j + 1].x) {
				swap(ball[j].x, ball[j + 1].x);
				swap(ball[j].serialNum, ball[j + 1].serialNum);
			}
				
		}

	for (int j = 0; j < t; j++) {
		for (int i = 0; i < n; i++) {
			if (ball[i].x == 0)		
				ball[i].v = 1;
			else if (ball[i].x == L)
				ball[i].v = -1;

			ball[i].x += ball[i].v;	//位置移动
			
			if (i!=0 && ball[i].x == ball[i - 1].x) {	//第i个球与它前面的球相撞
					ball[i].v = -ball[i].v;
					ball[i - 1].v = -ball[i - 1].v;
			}
		}
	}
	//难点
	for (int i = 0; i < n; i++)
		pos[ball[i].serialNum] = i;

	cout << ball[pos[0]].x;	//因为两个整数之间需要有空格,所以把第0个单独输出
	for (int i = 1; i < n; i++) {
		cout <<" "<<ball[pos[i]].x;
	}
	return 0;
}

/*
10 22 30
14 12 16 6 10 2 8 20 18 4
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值