图像工程的读书笔记 离散距离

这篇博客探讨了图像工程中距离量度函数的基本性质,如非负性、对称性和三角形不等式。详细介绍了4邻域、8邻域和马步距离的计算方法,并通过图像展示了它们的几何意义。此外,还讨论了离散圆盘和斜面距离作为欧式距离的整数近似。这些概念对于理解和应用图像处理算法至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像工程的读书笔记  离散距离

距离量度函数需要满足的三个条件是非负性,对称性和三角形不等式关系

领域简单的说就是两个点的距离为1。
四领域是只有四个方向计算距离,同理有八领域,十六领域和马步领域
如下图所示:

城区距离是4邻域的距离,d4=|xp-xr|+|yp-yr|
棋盘距离是8邻域的距离,d8=max(|xp-xr|,|yp-yr|)
马步距离的计算公式如下图:

离散圆盘 如下图

斜面距离是欧式距离的整数近似。
8邻域的斜面距离记为d3,4
16邻域的斜面距离记为d5,7,11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王伟1982

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值