Matlab绘制三维定限截面柱体;已知(隐)函数方程,绘制三维空间图形

本文介绍了如何使用Matlab中的fimplicit3函数绘制三维隐函数图形,并提供了基础示例及进阶技巧,如添加线条样式和平面方程,还展示了如何绘制复杂图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fimplicit3绘制三维隐函数

基本语法:

fimplicit3(f) %在默认区间 [-5 5](对于 x)和 y(对于 z)上绘制 f(x,y,z) = 0 定义的三维隐函数
fimplicit3(f,interval) %interval为 x、y 和 z 指定绘图区间

基础示例:

f = @(x,y,z) x.^2 + y.^2 - z.^2;  %所要绘制的隐函数方程
interval = [-5 5 -5 5 0 5]; %[xmin xmax ymin ymax zmin zmax] 
fimplicit3(f,interval)  %绘图

在这里插入图片描述
详情参考官方文档:fimplicit3

fimplicit3绘制空间定限截面柱体

柱体的隐函数方程:

设目标方程为: ∣ x ∣ + ∣ y ∣ = 1 |x|+|y|=1 x+y=1

clc,clear,close all;
figure;
f = @(x,y,z) abs(x)+abs(y)-1;
fimplicit3(f,[-2,2,-2,2,-1,4]);

在这里插入图片描述

添加线条样式:

只是让图例更好看一些,

clc,clear,close all;
figure;
f = @(x,y,z) abs(x)+abs(y)-1;
fimplicit3(f,[-2,2,-2,2,-1,4],...
    'FaceColor', '#4DBEEE', 'FaceAlpha',0.5,'EdgeColor','none');
%'FaceColor' 面的颜色  'FaceAlpha'  面的透明度[0-1]  'EdgeColor' 线条颜色

在这里插入图片描述

添加平面(截面)方程:

clc,clear,close all;
figure;
f = @(x,y,z) abs(x)+abs(y)-1;
fimplicit3(f,[-2,2,-2,2,-1,4],...
    'FaceColor', '#4DBEEE', 'FaceAlpha',0.5,'EdgeColor','none');
hold on
fimplicit3(@(x,y,z) x+y+z-2,[-2,2,-2,2,-1,4],...
    'FaceColor', 'k', 'FaceAlpha',0.5,'EdgeColor','none');

平面在柱体中截出的效果(鼠标拖动旋转视角):
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
有了以上对fimplicit3函数的用法经验,读者可自行尝试绘制更复杂的三维空间图形;
比如这样一个窝窝头:

clc,clear,close all;
% 函数句柄,注意要用点运算符
f = @(x,y,z) (x.^2+y.^2+z.^2).^3-x.^2.*z.^3-y.^2.*z.^3;
axis vis3d  %3维坐标系
fimplicit3(f,[-2,2,-2,2,-2,2],'EdgeColor', 'none', 'FaceAlpha',0.9);
xlabel('x轴');  ylabel('y轴');  zlabel('z轴');  % 加上坐标轴的标签
for i = 1:36
    camorbit(10,0,'data',[1 1 1]) %%[0 0 1]表示按z轴旋转。36*10=360表示旋转一周
    drawnow %%即时显示旋转的结果
end

在这里插入图片描述

二型线积分-斯托克斯公式例题

对于二型线积分的空间曲线问题(三个未知量),可利用斯托克斯公式(两个未知量的二维平面曲线问题对应使用格林),将二型线积分转化为一型面积分或二型面积分两种形式计算

在这里插入图片描述

两种形式计算的结果等价,差别在于计算量。因此,对于一些空间界面图形,不好想象在xoy、yoz、xoz平面上的投影时,一般转为二型面积分计算即可;当然,空间想象能力足够强,计算能力好的同学两种形式均可尝试得数。

正是因为这个小问题,才有了以上利用Matlab绘制空间三维图形的介绍;

例:

在这里插入图片描述

yoz上的投影:
在这里插入图片描述
xoy上的投影:
在这里插入图片描述
xoz上的投影:
在这里插入图片描述
除了xoy上的地面投影好想也好算,yoz和xoz上的投影面积分均不太好直接想象出来,所以这道题的标准答案在各类参考书上都是以斯托克斯公式转为二型面积分进行计算,但现在既然我们已经有了各个面上的投影,也可以尝试用一型面积分的逐个投影来计算:
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wayne_Fine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值