从0开发游戏引擎---DDA(digital differential analyzer)算法

博客围绕DDA算法展开,介绍其原理,即图形光栅化时确定逼近图形的像素集过程。阐述直线扫描转换含义,是在数字设备上确定逼近直线的像素组。还对一次函数y=kx+b进行公式推导,最后提及将算法转化为代码及方程转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DDA算法–原理

本质上,图形的生成是在指定的输出设备上,根据坐标描述构造二维几何图形。随机扫描显示器和向量绘图仪等模拟设备能将输出指令保存在显示文件中,再由指令直接绘制出图形。而对于更具广泛意义的光栅扫描显示器等数字设备来说,图形的输出是将出书平面,如光栅
扫描显示屏幕,看做像素的矩阵,在该矩阵上确定一个像素的集合来逼近该图形,如图所示。这里的图形生成算法针对后一种图形的光栅化的情形,给出在光栅扫描显示器等数字设备上确定一个最佳逼近与图形的像素集的过程,又称图形的扫描转换。逼近过程的本质可以认为是连续量向离散量的转换。

直线的扫描转换

直线的扫描转换就是在数字设备,上绘制一条直线,是指在有限个像素组成的矩阵中,确定最佳逼近与该直线的一组像素,并按扫描线顺序,用当前写的方式,对这些像素进行操作。
在这里插入图片描述
在这里插入图片描述

为了在光栅显示器上用这些离散的像素点逼近这条直线,需要知道这些像素点的x,y坐标。

含义.

所谓的画一条直线,其实是求一串点的坐标。

直线方程

根据直线的集合特征可确定直线路径的像素位置。直线的笛卡尔斜率截距方程为: y=m*x+b :

DDA算法—公式推导一次函数y=kx+b(斜截式方程)

一次函数是函数中的一种,一般形如y=kx+b (k, b是常数,k≠0) ,其中x是自变量,y是因变量。特别地,当b=0时,y=kx (k为常数,k≠0),y叫做x的正比例函数(direct pro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frank---7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值