|
BOOKS
2025 ARTICLES [ALL PUBS] [GOOGLE SCHOLAR] Bommasani, Rishi, Sanjeev Arora, Jennifer Chayes, Yejin Choi, Mariano-Florentino Cuéllar, Li Fei-Fei, Daniel E. Ho, Dan Jurafsky, Sanmi Koyejo, Hima Lakkaraju, Arvind Narayanan, Alondra Nelson, Emma Pierson, Joelle Pineau, Scott Singer, Gaël Varoquaux, Suresh Venkatasubramanian, Ion Stoica, Percy Liang, and Dawn Song. 2025. Advancing science-and evidence-based AI policy. Science 389, no. 6759 (2025): 459-461. Tolúlọpẹ́ Ògúnrẹ̀mí, Christopher D. Manning, Dan Jurafsky, and Karen Livescu. 2025. Transcribe, Translate, or Transliterate: An Investigation of Intermediate Representations in Spoken Language Models. Proceedings of IEEE ASRU 2025. Doumbouya, Moussa Koulako Bala, Dan Jurafsky, and Christopher D. Manning. 2025. Tversky Neural Networks: Psychologically Plausible Deep Learning with Differentiable Tversky Similarity. arXiv preprint arXiv:2506.11035. Neil Rathi, Dan Jurafsky, Kaitlyn Zhou. 2025. Humans overrely on overconfident language models, across languages. COLM 2025. Aryaman Arora, Dan Jurafsky, Christopher Potts, Noah Goodman. 2025. Bayesian scaling laws for in-context learning. COLM 2025. Myra Cheng*, Sunny Yu*, Cinoo Lee, Pranav Khadpe, Lujain Ibrahim, Dan Jurafsky. Social Sycophancy: A Broader Understanding of LLM Sycophancy. [code] Press coverage by MIT Technology Review and VentureBeat. Nathan Roll, Calbert Graham, Yuka Tatsumi, Kim Tien Nguyen, Meghan Sumner, and Dan Jurafsky. 2025. In-Context Learning Boosts Speech Recognition via Human-like Adaptation to Speakers and Language Varieties. Draft to appear, EMNLP 2025. Chen Shani, Dan Jurafsky, Yann LeCun, Ravid Shwartz-Ziv. 2025. From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning. arXiv. Aryaman Arora, Neil Rathi, Nikil Roashan Selvam, Róbert Csórdas, Dan Jurafsky, Christopher Potts. 2025. Mechanistic evaluation of Transformers and state space models. arXiv. Isabel O. Gallegos, Chen Shani, Weiyan Shi, Federico Bianchi, Izzy Gainsburg, Dan Jurafsky, Robb Willer. 2025. Labeling Messages as AI-Generated Does Not Reduce Their Persuasive Effects. arXiv. Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, James Zou. 2025. Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory. arXiv. Jamie Rosas-Smith, Martijn Bartelds, Ruizhe Huang, Leibny Paola García-Perera, Karen Livescu, Dan Jurafsky, and Anjalie Field. 2025. Constructing Datasets From Public Police Body Camera Footage. ICASSP 2025. Emma Pierson, Divya Shanmugam, Rajiv Movva, Jon Kleinberg, Monica Agrawal, Mark Dredze, Kadija Ferryman, Judy Wawira Gichoya, Dan Jurafsky, Pang Wei Koh, Karen Levy, Sendhil Mullainathan, Ziad Obermeyer, Harini Suresh, Keyon Vafa. 2025. Using large language models to promote health equity. NEJM AI. Kristina Gligorić, Tijana Zrnic, Cinoo Lee, Emmanuel J. Candès, and Dan Jurafsky. 2025. Can Unconfident LLM Annotations Be Used for Confident Conclusions? NAACL 2025. Moussa Koulako Bala Doumbouya, Ananjan Nandi, Gabriel Poesia, Davide Ghilardi, Anna Goldie, Federico Bianchi, Dan Jurafsky, Christopher D. Manning. 2025. h4rm3l: A Dynamic Benchmark of Composable Jailbreak Attacks for LLM Safety Assessment. ICLR 2025. Anna T. Thomas, Adam Yee, Andrew Mayne, Maya B. Mathur, Dan Jurafsky, and Kristina Gligorić. 2025. What Can Large Language Models Do for Sustainable Food? ICML 2025. Zhengxuan Wu*, Aryaman Arora*, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky, Christopher D. Manning, Christopher Potts. 2025. AxBench: Steering LLMs? Even simple baselines outperform sparse autoencoders. ICML. Cheng, Myra, Sunny Yu, and Dan Jurafsky. 2025. HumT DumT: Measuring and controlling human-like language in LLMs.. ACL 2025. Kaitlyn Zhou, Haishan Gao, Sarah Chen, Dan Edelstein, Dan Jurafsky, Chen Shani. 2025. Rethinking Word Similarity: Semantic Similarity through Classification Confusion. NAACL 2025 Kaitlyn Zhou, Jena D. Hwang, Xiang Ren, Nouha Dziri, Dan Jurafsky, and Maarten Sap. 2025. Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance. NAACL 2025. *Martijn Bartelds, *Nandi, Ananjan, Doumbouya, Moussa K. B., Jurafsky, Dan, Hashimoto, Tatsunori, and Karen Livescu (2025). CTC-DRO: Robust Optimization for Reducing Language Disparities in Speech Recognition. arXiv. |