梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?

梯度下降法是训练神经网络的常用优化算法,可能收敛到局部最优,但因其在大规模数据和复杂网络结构下的表现,以及随机性、正则化技术、优化算法改进的应用,使得它在深度学习中依然广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、梯度下降法

梯度下降法是一种优化算法,用于训练机器学习和深度学习模型,以最小化损失函数并调整模型参数,使其逼近或达到最优解。它通过迭代地更新模型参数,沿着损失函数梯度的反方向移动,从而逐步接近最优解。

在这里插入图片描述

梯度下降法的基本思想是在每个步骤中,计算损失函数对于模型参数的梯度,然后按照梯度的反方向进行参数更新,使损失函数逐渐减小。这样的迭代过程将在参数达到某个停止条件或达到预定的迭代次数时停止。

梯度下降法的主要步骤如下:

  1. 初始化参数: 首先,为模型的参数(权重和偏置)赋予初始值。

  2. 前向传播: 使用当前参数进行前向传播,计算模型的输出。

  3. 计算损失: 根据模型的输出和真实标签,计算损失函数的值,衡量模型预测的误差。

  4. 计算梯度: 计算损失函数对于每个参数的偏导数,即梯度。梯度表示了损失函数在当前参数值处的变化率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值