文章目录
一、RNN
RNN(Recurrent Neural Network,循环神经网络)是一种深度学习模型,专门用于处理序列数据或具有时间依赖性的数据。相对于传统的前馈神经网络(Feedforward Neural Network),RNN具有一种循环结构,可以对序列中的每个元素进行处理,并保留之前步骤的信息,从而在处理序列数据时更具优势。
RNN的基本思想是,在处理序列数据时,不仅要考虑当前输入的信息,还要考虑之前输入的信息,因为序列数据中的每个元素往往都与前面的元素相关。为了实现这种考虑前面信息的能力,RNN引入了一个隐藏状态(hidden state)的概念,它在每个时间步都会更新,以保存之前的信息。
RNN的核心结构是一个循环单元(recurrent unit),它在每个时间步都执行以下操作:
-
当前输入的计算: 将当前时间步的输入和上一个时间步的隐藏状态进行计算,得到当前时间步的输出。
-
更新隐藏状态: 将当前时间步的输出作为下一个时间步的隐藏状态,用于捕捉