文章目录
一、为什么更深的网络更好?
更深的神经网络在某些情况下可能表现更好,但并不是绝对的规律。以下是更深的网络可能更好的一些原因:
-
表示能力增强: 更深的网络具有更多的层和参数,可以学习更复杂的特征表示。这对于处理复杂的、高维度的数据(如图像、语音)非常有用,可以更好地捕获数据中的细微变化。
-
特征层级: 深层网络可以逐层地学习特征的不同层级。低层网络可以学习低级别的特征(如边缘、纹理),而高层网络可以学习高级别的特征(如形状、物体)。
-
表示共享: 深层网络可以在不同的层次上共享特征表示,提高了特征的复用性和泛化性能。
-
解决梯度消失问题: 深层网络中的跳跃连接和各种激活函数(如ReLU)有助于减轻梯度消失问题,使得网络更容易训练。
-
迁移学习: 更深的网络在预训练和迁移学习中表现更好。预训练的深